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Abstract

We introduce a novel approach for solving quantitative economic models: generative

economic modeling. Our method combines neural networks with conventional solu-

tion techniques. Specifically, we train neural networks on simplified versions of the

economic model to approximate the complete model’s dynamic behavior. Relying on

these less complex submodels circumvents the curse of dimensionality, allowing the use

of well-established numerical methods. We demonstrate our approach across settings

with analytical characterizations, nonlinear dynamics, and heterogeneous agents, em-

ploying asset pricing and business cycle models. Finally, we solve a high-dimensional

HANK model with financial frictions to highlight how aggregate risk amplifies the pre-

cautionary motive.
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1 Introduction

The advances in artificial intelligence provide substantial opportunities for quantitative

economics by shifting the production-possibility frontier of modeling. Deep learning has

emerged as a powerful tool for solving dynamic economic models that were previously

considered intractable. The curse of dimensionality - first articulated by Bellman (1957) -

typically limits the complexity of economic models to only a few state variables. However,

deep learning can help to tame this problem, as discussed in Fernández-Villaverde, Nuño

and Perla (2024). Unfortunately, successfully employing deep learning in practice often

requires meticulous and detailed adjustments tailored to the specific model at hand, which

makes it challenging to employ without major investments. In contrast, established con-

ventional solution methods, though constrained by the curse of dimensionality, are already

specifically designed and optimized for particular types of economic models and feature

well-understood emergence properties. We propose a novel approach that combines the

strengths of both artificial intelligence and conventional solution methods: generative eco-

nomic modeling.

Our approach employs neural networks to approximate the economic model. Rather

than training directly on the full model, we train the network on a collection of simplified

models, which we call submodels. Each submodel contains only a subset of states and

features and therefore represents only part of the full model’s dynamics.1 By relying on

submodels, we can solve the simpler problems with conventional methods and avoid the

curse of dimensionality. Because each submodel captures only some features, we design

the collection with overlapping features to ensure coverage of all features present in the full

model. We simulate each submodel separately and merge the resulting data into a single

training set. A neural network is then trained on this combined dataset to approximate the

full model and recover interactions across states and features.2

Our method belongs to the class of generative artificial intelligence because we employ

a neural network to generate results for the complete model that includes all features and

states, something we have not used for the training process. Generative artificial intelli-

gence has achieved significant success, especially in the context of large language models,

which are very large deep learning models. While this success also holds promise for our

approach, the generative performance of neural networks in our context of economic mod-

eling is a priori not clear.

1 Researchers often work with a simplified version of the model of interest because computational constraints
limit feasible complexity. Our approach formalizes how to leverage a set of submodels and apply deep
learning to approximate a richer model.

2 The neural network serves as a surrogate model that mimics the behavior of a more complex system.
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We validate our approach by computing Euler equation errors to assess the accuracy of

the resulting model solution. Specifically, we evaluate the errors in the complete model

with all shocks and features while using policy functions learned from networks trained

only on a collection of submodels with limited features. This delivers an out-of-sample

check against the optimality conditions of the full model without having to solve the full

model with conventional methods. Moreover, this metric can provide guidance in design-

ing submodels and specifying the neural network architecture. Rather than providing a

fixed set of rules or formal proofs, our approach follows the data science tradition: we

can evaluate and experiment to identify which combination of submodels yields the best

approximation.

As a first practical demonstration, we study a simple and analytically tractable asset

pricing model. We choose this setting because it allows us to show analytically how the

full model can be approximated through a set of submodels. The controlled environment

serves to illustrate the methodology and provides a necessary first validation step.

We find that our generative modeling approach closely matches the analytical solution.

Since analytical solutions are not available for most applications, we also evaluate accu-

racy through Euler equation errors. The errors in our approach are very low and com-

parable to those obtained when a network is trained directly on data simulated from the

full model. This indicates that our method generates coherent full-model behavior from

submodel building blocks and recovers the dynamics of a richer model with more features.

In contrast, training on data from a single submodel produces sizable approximation errors

and highlights the advantage of our methodology over the common practice of extrapolat-

ing from small models to larger ones.

As a next step, we evaluate our method in a more challenging environment. We use

different variants of a non-linear real business cycle (RBC) model to assess how well our

method provides a global solution. Specifically, we work with three non-linear versions: i)

a simplified version that can be solved analytically, ii) a medium-sized version with state-

dependent investment costs that result in distinct nonlinearities, and iii) a heterogeneous

agents version with partially uninsurable income risk in line with Krusell and Smith (1998).

While the variants are increasing in their complexity, we can still rely on conventional solu-

tion methods to solve the complete model. Thus, we can evaluate how well our approach

is designed to capture nonlinearities and how applicable it is to the class of heterogeneous

agent versions, benchmarking it against the complete model. Similarly, we exemplify how

to use the Euler equation error as a measure of fit in different setups.

To solve these models with generative economic modeling, we construct for all these

models overlapping submodels and then use simulated data to train our neural network.
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Our methodology provides a very good approximation in all three versions of the model.

When compared with neural networks trained directly with the complete model, the mag-

nitude of these errors is in the same range.3 Similarly, the Euler equation errors are low

and have the same magnitude, highlighting the robustness and accuracy of our approach.

This holds for the aggregate dynamics in the analytical model, the heterogeneous agent

version as well as the nonlinear dynamics in the medium-sized model with piecewise non-

linear capital adjustment costs. By accelerating the solution of complicated models and

enabling the analysis of very hard-to-solve economic environments, our approach provides

a powerful tool for advancing research on nonlinear, heterogeneous, and more generally,

high-dimensional economic models.

Finally, we apply generative economic modeling to solve a complex Heterogeneous

Agent New Keynesian (HANK) model with multiple aggregate shocks and financial fric-

tions. The financial friction prevents firms from hiring as many workers as they desire and

introduces a nonlinearity in the model. Solving this class of models is computationally

challenging, as the dimensionality of the household state space increases with each addi-

tional aggregate shock.4 Additionally, heterogeneous agent models with multiple aggregate

shocks face a threefold curse of dimensionality. First, expanding the state space signifi-

cantly increases the computational complexity of solving the household problem. Second,

incorporating additional shocks complicates the accurate computation of expected values.

Third, introducing more states necessitates a more involved calculation of the perceived

laws of motion to forecast the future evolution of payoff-relevant aggregate variables.

Our methodology addresses these challenges by effectively reducing the state space by

solving smaller submodels, which are then collectively used as inputs to train the neural

network. Specifically, we construct a collection of nonlinear submodels, each of which

includes the financial friction but only a subset of the aggregate shocks. We then solve

and simulate these submodels using a version of the global solution method developed by

Krusell and Smith (1998), extended to accommodate multiple shocks. Subsequently, we

merge the simulated data from the submodels and train a neural network on the com-

bined dataset to approximate the dynamics of the full model, with all shocks and frictions

simultaneously active.

3 The positive approximation errors for the complete model come from training the neural network instead
of working directly with the complete model solution.

4 Several studies have proposed different approaches and modifications to solve such models; see, for exam-
ple, Algan, Allais and Den Haan (2008), Reiter (2009), Den Haan (2010), Gornemann, Kuester and Naka-
jima (2016), Ahn et al. (2017), Boppart, Krusell and Mitman (2018), Bayer and Luetticke (2020), Auclert
et al. (2021), and Bayer, Born and Luetticke (2024). Despite these advances, solving fully specified HANK
models with multiple nonlinear frictions and shocks remains numerically intractable with conventional
solution methods.
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The analysis delivers two central insights about the transmission of financial shocks

in a HANK model with financial frictions. First, the model highlights how the presence

of additional aggregate shocks alters the transmission of any single shock. For instance,

the impact of a financial shock is attenuated in a setting with more aggregate shocks.

This dampening arises from increased aggregate uncertainty, which strengthens agents’

precautionary motives. With more sources of risk, households anticipate greater volatility

and self-insure more aggressively through higher precautionary savings. As a result, when a

shock hits, they are better prepared, and the overall economic response is less pronounced.

Second, the model exhibits strong nonlinear effects in response to a financial shock. While

all sizes of negative shocks result in a downturn of the model economy, these effects become

much stronger when the financial shock is larger. Larger shocks constrain firms more in

their hiring decision, strongly reducing households’ labor income, which triggers a larger

downturn.

As initial motivation for our approach, we emphasized the potential fragility of deep

learning when applied directly to solve the economic model. Our method avoids this prob-

lem due to a key difference. In our approach, the training data for the neural network is

precalculated based on conventional solution methods and is therefore not endogenously

affected by the training of the neural network. By contrast, when deep learning is ap-

plied directly to solving economic equations, the inputs used usually depend on the model

solution generated by the neural network itself. In this case, the inputs are endogenous

rather than exogenous, as they rely on the output of the neural network. This feedback

loop makes finding a solution substantially more difficult — an issue that our generative

economic modeling approach avoids.

Literature Review Our paper belongs to the fast-growing literature that uses deep learn-

ing to solve dynamic economic models. The areas of application have been HANK mod-

els (Fernández-Villaverde et al., 2024; Kase, Melosi and Rottner, 2022), heterogeneous

agents (Azinovic, Gaegauf and Scheidegger, 2022; Azinovic-Yang and Žemlička, 2025;

Fernández-Villaverde, Hurtado and Nuno, 2023; Gorodnichenko et al., 2021; Gu et al.,

2024; Han, Yang and E, 2021; Kahou et al., 2021; Maliar and Maliar, 2022; Maliar, Maliar

and Winant, 2021), overlapping generations and life-cycle (Azinovic-Yang and Žemlička,

2024; Druedahl and Røpke, 2025; Pascal, 2024), finance (Chen, Didisheim and Scheideg-

ger, 2023; Duarte, Duarte and Silva, 2024; Duarte and Fonseca, 2024; Valaitis and Villa,

2024), labor markets and search (Adenbaum, Babalievsky and Jungerman, 2024; Junger-

man, 2024; Payne, Rebei and Yang, 2024), monetary policy (Chen et al., 2021; Nuño,

Renner and Scheidegger, 2024), climate change (Fernández-Villaverde, Gillingham and
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Scheidegger, 2024; Friedl et al., 2023; Kübler, Scheidegger and Surbek, 2025), and beha-

vorial macroeconomics (Ashwin, Beaudry and Ellison, 2025; Kahou et al., 2024). However,

our approach to using neural networks deviates strongly from these papers, as we are not

interested in directly solving the economic equations. More closely related to our work is

the usage of neural networks as surrogate models as in Kase, Melosi and Rottner (2022)

and Chen, Didisheim and Scheidegger (2023). Yet, these papers use the complete underly-

ing model for the training, thereby excluding the generative part. Finally, we also differ by

following a hybrid approach that exploits the advantages of conventional solution methods

and deep learning.

Our methodology allows us to speak to the large literature on HANK models (see e.g.,

McKay and Reis, 2016, McKay, Nakamura and Steinsson, 2016 Den Haan, Rendahl and

Riegler, 2018, Guerrieri and Lorenzoni, 2017, Ravn and Sterk, 2017, Kaplan, Moll and

Violante, 2018, Kaplan and Violante, 2018, Auclert, 2019, Bayer et al., 2019, Ravn and

Sterk, 2020, Gornemann, Kuester and Nakajima, 2016, Luetticke, 2021, Auclert, Rognlie

and Straub, 2024, Bayer, Born and Luetticke, 2024). We show that aggregate risk sub-

stantially increases the precautionary motive. Even though recent work in this literature

has increasingly focused on incorporating aggregate risk and non-linearities by approxi-

mating the dynamics to higher-orders (Bhandari et al., 2023, Bayer et al., 2024), adding

occasionally binding constraints (Lin and Peruffo, 2024) or focusing on uncertainty (Ilut,

Luetticke and Schneider, 2025), these methods do not attempt to solve the model globally.

Only very few papers can solve a medium-scale HANK model globally, and they do not use

conventional solution methods, except Schaab (2020). Instead, our approach provides a

solution that combines an adapted version of the widely used global solution method of

Krusell and Smith (1998) with neural networks to model nonlinearities and heterogene-

ity jointly.5 Our work is also directly related to integrating financial frictions and shocks

in HANK models (see e.g., Fernández-Villaverde, Hurtado and Nuno, 2023, Faccini et al.,

2024, Nord, Peruffo and Mendicino, 2024).

Our work also builds on the broader literature on conventional solution methods that

do not rely on deep learning. Given the vast array of contributions across different fields of

computational economics, providing a comprehensive review would be infeasible. Instead,

we refer to the influential books on numerical methods by Judd (1998), Miranda and Fack-

ler (2004) and Heer and Maussner (2024), which provide a great overview of the meth-

ods available. Our approach builds upon these traditional methods while leveraging deep

learning to enhance their capacity to handle higher levels of complexity. The combination

5 For instance, Meriküll and Rottner (2025) show empirically that the distributional effects of monetary
policy are nonlinear.
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of the methods makes it possible to tackle problems that were previously computationally

intractable.

2 Generative Economic Modeling

This section outlines our generative economic modeling approach, which is designed to

solve a large class of dynamic general equilibrium models.6

2.1 Underlying Complete Dynamic General Equilibrium Model

The dynamics of a dynamic general equilibrium model can be expressed as a transition

equation:

St = f
(
St−1, νt, ψ(St−1, νt)|Θ

)
(1)

where the state vector St ∈ Rm describes the economy in period t. Note that such a

representation can contain heterogeneous agents or behavioral models. The economy is

also subject to exogenous shocks that follow a Markov process, which is captured by the

vector νt ∈ Rn. There is also a vector of structural parameters Θ ∈ Rd, which affects

the dynamics of the model. The function f(·) determines the mapping from the previous

period state variables St−1 and current period shocks νt to the current period state variables

St conditional on the structural parameters. To solve the transition equation, it is needed

to find the policy function (decision function) ψ(St−1, νt), which maps the model state

variables St−1 and νt to a set of choices ψt. For notational convenience, we directly include

the policy function in the transition equation.

This mapping from the state variables to the policy function is usually unknown and

needs to be solved with numerical methods. Luckily, there already exists a large set of

solution methods - more general solution approaches, like value function iteration, policy

function iteration, or the endogenous grid point method, and very tailored solution meth-

ods, such as the Krusell-Smith approach for heterogeneous agent economies with aggregate

risk. In general, the idea is to find an equilibrium function that maps the state variables to a

set of control variables, ψt = ψ(St−1, νt|Θ). These policy functions satisfy a set of equations

derived from the model.

F(ψt) = 0 (2)

Once equipped with these policy functions, we can solve for the transition equation.

6 We focus on dynamic Markov economic models, where agents solve a Markov decision problem, as e.g. in
Maliar, Maliar and Winant (2021) and Fernández-Villaverde, Nuño and Perla (2024).
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The advantage of our approach is that we keep the conventional policy-function solution

steps unchanged, since they have been refined for years for specific problems. However,

such conventional global solution methods face the curse of dimensionality. The exponen-

tial growth of the grid points of the state space as the number of states increases limits the

complexity of the economic model that can be considered. For instance, solution methods,

which use full grid-based approaches with G points per dimension, have exponential com-

puting costs, as shown by the number of grid points O(Gm+n).7 Importantly, this problem

already occurs for a small number of states.

2.2 Submodels of the Complete Model

The curse of dimensionality often forces the modeler to reduce the complexity of the stud-

ied model by limiting the number of state variables and shocks. In other words, a simplified

submodel is derived from the underlying complete model.8 In practice, using a submodel

instead of the most comprehensive model available is mostly the norm when working with

global solution methods.9 In that regard, economists are well-trained to use submodels,

and it is likely the common approach.

We denote the variables in a submodel version with ∼ and rewrite the transition equa-

tion of the submodel as:

S̃t = f̃
(
S̃t−1, ν̃t, ψ̃t|Θ̃

)
(3)

where the dimension of the states S̃t ∈ Rm̃ and shocks ν̃t ∈ Rñ is smaller than in the full

model, that is (m̃ < m)∨ (ñ < n). Note that the set of structural parameters Θ̃ ∈ Rd̃ is then

also potentially smaller, that is d̃ ≤ d.10

However, we can now specify not only one submodel, but instead several submodels

that capture different elements of the underlying model, that is S̃a
t , S̃b

t , S̃c
t , . . . , where the

superscript indicates the submodel:

S̃i
t = f̃ i

(
S̃i
t−1, ν̃

i
t , ψ̃

i
t|Θ̃i

)
, for i = a, b, c, . . . (4)

7 Note that refinements to the solution method can lower the computational costs, e.g. adaptive sparse grids
(see Brumm and Scheidegger (2017)).

8 This approach is related - though conceptually distinct - to dimensional decomposition, in which the behav-
ior of a high-dimensional function is represented as a sum of lower-dimensional functions. For applications
in economics to reduce the curse of dimensionality, see Eftekhari and Scheidegger (2022) and Eftekhari
et al. (2025).

9 Models that are solved with perturbation methods are usually much larger than models solved with global
solution methods, however, there also exist limits on the size of the problems. In the HANK literature, the
size of the household problem is such a limiting factor.

10 We impose that each submodel in itself is still a general equilibrium model.
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A B C Full

Figure 1 Illustration of the concept of submodels, where we have three submodels that cover a different
subset of states from the full model, as marked with different colours (green, red, and blue). In total, we
have three submodels (A, B, and C), capturing all possible subset combinations of the full model.

All these submodels together form a set f̄ :

f̄
(
St−1, νt, ψt|Θ̃

)
=
{
f̃a
(
S̃a
t−1, ν̃

a
t , ψ̃

a
t |Θ̃a

)
, f̃ b
(
S̃b
t−1, ν̃

b
t , ψ̃

b
t |Θ̃b

)
, f̃ c
(
S̃c
t−1, ν̃

c
t , ψ̃

c
t |Θ̃c

)
, . . .

}
,

(5)

where we omitted the dependence of the policy function for conciseness.

Importantly, the numerical costs to extend the set increase linearly instead of exponen-

tially (conditional on keeping the same number of states and shocks for each submodel).

The submodels can be specified to be complete and overlapping. We define completeness

as each state St and shock νt is at least covered in one submodel. Therefore, at least one

submodel captures one specific part of the underlying model. This requirement ensures

that the set of submodels and the true model have the same states, shocks, and param-

eters. We define overlap as each state St and shock νt should be at least covered in two

different submodels, so that the different subsets overlap.

The number of required submodels to achieve completeness and overlap as defined

above is determined by the binomial coefficient:(
m+ n

m̃+ ñ

)
=

(m+ n)!

(m̃+ ñ)! (m+ n− m̃+ ñ)!
, (6)

where m + n and m̃ + ñ denote the number of states in the full model and the submodel,

respectively. For each of the submodels, the number of grid points is now substantially

lower due to the reduced dimension, that is O(Gm̃+ñ).

Illustration of submodels To illustrate the notion of a submodel, consider an economic

model with a state vector S that is too complex to solve in full. Instead, we solve submod-

els, each based on a subset S̃. Figure 1 illustrates three submodels, each containing only

a subset of the states from the full model. However, we solve the submodels with overlap,
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such that each submodel features two of the subsets of states. For instance, submodel A in-

cludes the blue and green subset of states, while others incorporate different combinations.

In total, we have three submodels (A, B, and C), capturing all possible subset combinations.

2.3 Deep Learning Approach to Reconstruct the Full Model

Each submodel is a subset of the true underlying model, that is

f̃ i
(
S̃i

t−1, ν̃
i
t , ψ̃

i
t|Θ̃
)
⊂ f (St−1, νt, ψt|Θ) ,∀i = a, b, c, . . . (7)

The idea of this paper is to evaluate whether a rich specified set of submodels is sufficient

to approximate the true underlying model. Although the set of submodels is complete and

overlapping, the submodels are only partial representations of the full models. For this

reason, we want to use deep learning to learn the underlying dynamics of the full model

from the set of submodels, leveraging deep learning’s generative capacity. We approximate

the transition equation, including the policy function, of the submodels using a surrogate
model in the form of a deep neural network f̄NN such that

f̄NN (St−1, νt, ψt|Θ) ≈ f̄ (St−1, νt, ψt|Θ) . (8)

Below, we illustrate the individual steps of the analysis, and delegate the approach of

assessing whether the neural network accurately approximates the true model’s dynamics

to the next subsection.

Steps of the generative economic modeling approach Our generative economic mod-

eling approach proceeds in three steps, as illustrated graphically in Figure 2.

1. First, we solve the simplified submodels, ensuring completeness and overlap of the

submodels. The choice of solution algorithm is left to the researcher, as our approach

is compatible with any method that can solve the dynamics of the model.11

2. Second, we simulate each submodel separately to create the data series for the differ-

ent variables. We then prepare the dataset by merging all simulations, creating a long

data series in which only a specific subset of states and shocks is active in different

11 While any solution method can be used, the methodology yields optimal performance when applied to
solution techniques that minimize approximation errors. The surrogate model’s accuracy depends on how
well the training data represents the true data generation process. In our applications later on, we employ
global solution techniques to solve the model as accurately as possible.
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1. Solve

A

B

C

2a. Simulate

XA
t , νAt , . . .

XB
t , νBt , . . .

XC
t , νCt , . . .

2b. Prepare Dataset

• Dataset D = {Di}i∈{A,B,C}
constructed by stacking
{Si

t, ν
i
t}Nt=0

• Sample k from D is a
pair xk and yk:
inputs xk = [X i

t , ν
i
t ]

targets yk = [Si
t+1]

3. Train Neural Network

...

...
ỹk

Loss: L(yk, ỹk) = 1
B

∑B
k=1 ∥ỹk − yk∥2

xk

yk

Figure 2 Flow chart of the generative economic modeling method.

periods. The dataset that holds the simulation for all submodels is:12

D̄ =

{{
S̃a
t−1, ν̃

a
t , ψ̃

a
t

}N

t=1
,
{
S̃b
t−1, ν̃

b
t , ψ̃

b
t

}N

t=1
,
{
S̃c
t−1, ν̃

c
t , ψ̃

c
t

}N

t=1
, . . .

}
. (9)

3. Finally, we train the neural network using the datasets from the submodels by min-

imizing the mean squared errors between the predicted values from the neural net-

work and the observed values from the submodels:13

f̄NN = argmin
W̄

L(W̄ |D̄) (10)

By training the network on data from multiple submodels, it learns the distinct transmis-

sion mechanisms of individual shocks, effectively generating an economic model that inte-

grates the key features of the underlying data. At the same time, some higher-order interac-

tion terms remain unobserved during training because each submodel includes only a sub-

set of features. As a result, the surrogate approximation will contain some residual error.

However, this error decreases as the number of features per submodel increases. Addition-

ally, in many economic models the contribution of higher-order interaction terms—such as

those arising from multiple shocks—tends to diminish. Consequently, even when trained

on submodels with a limited number of features or shocks, the surrogate is expected to

achieve high accuracy for most applications. In what follows, we demonstrate how to eval-

uate whether the neural network approximates to a high degree of accuracy the complete

model’s dynamics by leveraging insights from its individual components.

12 Because our set of submodels is complete, this training data covers all states and shocks, that is St and νt.
13 We also divide the collected dataset into a training and validation sample.14
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2.4 Ex-post Validation: Euler Equation Errors as Criteria of Fit

To evaluate the accuracy of our generative modeling approach, we need to evaluate whether

it approximates the dynamics of the true model. Hence, we need to test whether for the

true states St, shocks νt and parameters Θ it holds that

f̄NN (St−1, νt, ψt|Θ) ≈ f (St−1, νt, ψt|Θ) . (11)

When showcasing our method in the following chapters, we rely mostly on models

where we can solve the complete model for illustration purposes and can benchmark the

performance of our methodology against the true data-generating process. Hence, we can

check whether equation (11) holds approximately.15

However, this possibility is, in practice, usually unavailable as the methodology is de-

signed to be applied to a model that is otherwise unsolvable, as in the case of our HANK

model with financial frictions. Even though we cannot provide a proof that a sufficiently

rich set of submodels approximates the true underlying model, we can directly employ

standard methods to check the approximation error. In particular, we can use selected

equilibrium conditions and calculate the associated Euler equation errors, as e.g. in Judd

(1998) and Aruoba, Fernández-Villaverde and Rubio-Ramirez (2006). Hence, we can check

whether the following relation approximately holds:

F (ψNN(St−1, νt)) ≈ 0. (12)

where ψNN(·) denotes the neural network-based approximation of the policy function. The

equilibrium conditions can be taken directly from the conventional solution step for the

complete model, which we never solve. However, we now use our mapping from the

generative neural network to assess the fit. Note that we can also evaluate expectations

over variables using methods such as Monte Carlo or Quadrature rules, that have been

used for solving the submodels.

3 Illustration of the Method with a Tractable Example

This section illustrates our methodology using a simple, analytically tractable asset pricing

model. We choose this model because it illustrates analytically how our method is able

to approximate a full model through submodels. Specifically, the higher-order interaction
15 Since training a neural network introduces errors in the approximation, besides checking the approxima-

tion (11), we also check the relative performance of our neural network trained on data from the submodels
compared to a neural network trained on the true data generated from the true full model.
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terms of the shocks can be characterized analytically, ensuring that the submodels jointly

capture all components of the complete model’s solution. We interpret success in this

environment as a necessary condition for validating our approach before we evaluate the

method using more complicated models later.

3.1 Asset Pricing Model and Decomposition into Submodels

The model is a basic asset pricing framework based on Canzoneri, Cumby and Diba (2007).

To solve the model, we need to determine the price of a nominal pure discount bond,

denoted by qt, which satisfies the following Euler equation:

qt = β Et [exp(−πt+1 − γ∆ct+1)] , (13)

where γ is the coefficient of relative risk aversion, πt = log(Πt) is the log gross inflation

rate, and ∆ct = log(Ct)− log(Ct−1) is the change in log consumption. This equation arises

from a standard consumption-savings problem in which households price nominal bonds

under uncertainty.

To close the model, we assume that log inflation and log consumption growth follow a

first-order vector autoregressive process (VAR(1)):

yt = Ayt−1 + ηϵt, (14)

where yt = [πt,∆ct]
′ is the state vector, ϵt = [ϵat , ϵ

ζ
t , ϵ

µ
t ]

′ is a vector of structural shocks,

and η is a 2 × 3 matrix of shock loadings. We associate each shock with an economic

interpretation: a technology (TFP) shock (a), a discount factor shock (ζ), and a markup

shock (µ). This labeling is primarily for interpretability and does not affect our results.

Analytical Solution of the Complete Model Given the log-linear structure of the model,

we can solve it analytically.16 Then the full solution for the price of the asset can be written

as:

qt = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(η11 + γη21)

2︸ ︷︷ ︸
ϵa

+(η12 + γη22)
2︸ ︷︷ ︸

ϵζ

+(η13 + γη23)
2︸ ︷︷ ︸

ϵµ

])
(15)

16 A detailed derivation is provided in Appendix A.
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where aij denotes the (i, j)-th entry of the matrix A, and ηij denotes the (i, j)-th entry

of the impact matrix η. The terms in the square bracket of equations (15) captures the

contribution of all present shocks to the conditional variance of the pricing kernel. All

terms in the second line represent the effect that fluctuations introduced by the existence of

the aggregate shocks have on the pricing kernel, with the contributions directly connected

to the specific shocks.

Analytical Solution of the Submodels To use this example for our methodology, we

assume that we cannot solve the full model. Instead, we can only solve submodels that

have only two of the three shocks. Shutting down an individual shock i is identical to

setting ηi1 = ηi2 = 0 in (14). The following equations denote the equilibrium prices without

a shock i by q\it :

q
\a
t = β exp

(
−(a11 + γa21) πt − (a12 + γa22)∆ct +

1
2

[
(η12 + γη22)

2 + (η13 + γη23)
2
])

(16)

q
\ζ
t = β exp

(
−(a11 + γa21) πt − (a12 + γa22)∆ct +

1
2

[
(η11 + γη21)

2 + (η13 + γη23)
2
])

(17)

q
\µ
t = β exp

(
−(a11 + γa21) πt − (a12 + γa22)∆ct +

1
2

[
(η11 + γη21)

2 + (η12 + γη22)
2
])

(18)

As each submodel lacks one shock (i.e. ηi1 = ηi2 = 0 for a shock i), the variance term varies

from submodel to submodel.17

Mapping of the Solutions The submodels together feature all elements from the impact

matrix of the full underlying model.18 Each submodel features two of the pricing terms for

aggregate risk, as can be seen in the equations for the submodels (16) - (18). Additionally,

each submodel contains the terms for the direct impact of inflation and log consumption

growth on the asset price.

The idea of our approach is that during training, the surrogate neural network learns

these pricing coefficients from the data of each submodel in the combined dataset. The

surrogate learns these submodel specific coefficients because the pooled dataset includes

zero-shock realizations that let it distinguish observations by submodel. Overlapping simu-

lations from different submodels ensures coverage of all coefficients and shock interactions

such that we are able to approximate the solution of the complete model in equation (15).

17 Note also that the VAR(1) process for πt and ∆ct differs, since these series are affected by only two shocks
in the submodels, compared to three shocks in the true model.

18 This property is not a general feature of models, since it relies on the submodels collectively featuring all
terms of the full model. In our case, we have that all terms above the second order are zero, so that the
combination of submodels fully captures it.
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Figure 3 Training and validation convergence for the asset pricing model. The figure shows the loss over the
training sample (left) and validation sample (right).An epoch is completed when all the training or validation
sample points are utilized. The vertical axis is expressed in logarithmic scale.

3.2 Data Simulation and Dataset Generation

To generate our datasets, we simulate synthetic data for three submodels separately. Specif-

ically, we simulate each model for 20000 periods by drawing random realizations of the

shock vector ϵt and use the analytical solution to simulate the variables forward. Specif-

ically, we generate paths for inflation and log consumption growth using equation (14),

and compute the corresponding bond prices using equations (16) - (18), depending on the

submodel. For each submodel where shock i is inactive, we obtain simulated time series

{q\it , π
\i
t ,∆c

\i
t , ϵ

\i
t }, where ϵ\it is a T × 3 matrix of shock realizations. Since shock i is turned

off in the respective submodel, the corresponding column of ϵ\it is zero throughout the

simulation.

After simulating all three submodels, we concatenate the resulting datasets into a single,

unified dataset.19 This combined dataset includes observations on πt, ∆ct, and ϵt from each

of the submodels, along with the associated bond prices qt.

3.3 Neural Network Training

We then use the combined dataset from the simulations to train a neural network as a

surrogate model. By including shock realizations equal to zero in the training data, we

allow the neural network to learn from data in which a particular shock is absent with

19 When combining the datasets, we shuffle the data such as to reduce autocorrelation of the input data, as
well as to mix the input data from different submodels. Moreover, we cut the total number of input data
to 20000, such that only a third of the available data is used for training and evaluation.
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Figure 4 Approximation error of the asset price qt (LHS) and Euler equation error (RHS) in the asset pricing
model. For the approximation error, we compare the simulated value to the true value for 16000 periods
for our generative modeling approach (blue). It is compared to using the complete model (orange) and
incomplete model (green), for which we train a neural network using data generated from the full analytical
solution and from a single submodel, respectively. The Euler equation error uses the predictions of generative
economic modeling and calculates how well the model fulfills the model-implied Euler equation. We compare
the Euler equation error for our generative method (blue) to the Euler equation error generated by the
complete model (orange).

certainty. The neural network, as a flexible nonlinear function approximator, is thus trained

to recognize that the policy function changes systematically in the absence of shocks.

The neural network architecture features five hidden layers with 128 neurons each,

linear activation functions in the input and output layers, and HardSigmoid activations

in all hidden layers. We train the network using the AdamW optimizer to minimize the

mean squared error between predicted and true values. The learning rate follows a cosine

annealing schedule, starting at 10−3 and decaying to 10−7 over the course of training.

The neural network is trained for 2000 epochs with a batch size of 200. For the training

of the neural network, we divide our dataset into a training sample, which we use to

train the neural network directly. We compare the loss with a validation sample to avoid

overfitting the neural network. Figure 3 shows the mean squared residual error for the

training and validation samples, which shows that the loss converges to 10−7 after 2000

epochs. While the validation loss is slightly larger, there is no overfitting, as the validation

loss is not increasing.

3.4 Results

We now evaluate our generative approach using the approximation error, the Euler equa-

tion error, and model moments.
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Approximation Error The numerical accuracy of our method is shown in Figure 4. Specif-

ically, the left panel displays the histogram of the approximation error for the asset price.

We compute the error as the difference between the neural network’s predicted value and

the true analytical value, using a sample of 16000 periods. The average error is close to

zero, and the distribution is tightly concentrated around zero, showing a very good fit in

this laboratory setting. The neural network extrapolates based on its fit to the training

data from the different submodels. In doing so, it draws on the pricing coefficients it has

learned separately from each submodel. Since each submodel isolates different combina-

tions of shocks, the neural network learns all three aggregate risk pricing terms through

exposure to their respective datasets. As a result, its extrapolations to the full model setting

yield highly accurate predictions.

We also compare our approach to using the complete model, for which we train a neu-

ral network using data generated from the full analytical solution with all three aggre-

gate shocks present. The error is very similar to the generative approach, confirming our

method. By contrast, restricting training to a single submodel produces much higher er-

rors.20 The distribution for the incomplete model is more spread, as the model misses key

features.

Euler Equation Error The right panel of Figure 4 reports our external validation measure

— the Euler equation error. As mentioned earlier, the advantage of this measure is that

it can be computed even without directly solving the complete model. The generative

approach produces a very low Euler equation error, centered below 10−3. For comparison,

we also report the Euler equation error for the complete model, which is slightly smaller.

However, in both cases the values are small and the difference is negligible. Thus, the Euler

equation provides a direct validation of our approach.

We do not report the Euler equation error for the incomplete model, as this is only a

measure of numerical accuracy and not a criterion for model selection. While a low Euler

equation error indicates that the model is solved with high precision, it does not provide

guidance on the appropriateness of the model’s design. For this purpose, the model’s in-

tended use or its fit with the data should be the decisive consideration.

Moments Another important criterion is how well our approach recovers the underlying

model moments. A particularly useful criterion here is the standard deviation of the asset
20 We train another neural network that now only uses the simulations from a submodel that features only a

TFP shock. Note that we include in the autoregressive process of equation (14), which governs inflation
and consumption growth, all three shocks for the approximation and Euler equation. When using only a
submodel also for equation (14), the errors would be substantially higher, resulting in a different order of
magnitude for the error.
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price, where our generative approach predicts a value of 0.1416, which is very close to the

true value of 0.1423. In contrast to this, a submodel with only one shock, which is used

to simulate the model and calculate the asset price, underestimates the standard deviation

substantially. For instance, the standard deviation with only the TFP shocks would be only

0.0850. The reason is that two sources of risk are omitted. If we instead recalibrate the

model to match a standard deviation of 0.1423 for the asset price, the contribution of the

two shocks becomes highly overstated. Thus, it is critical to work with the model that best

fits the purpose or the data, reiterating the need to solve the complete model.

4 Evaluation with an RBC model with Nonlinearities and

Heterogeneous Agents

In this section, we evaluate our generative economic modeling approach using variants of

an RBC model that we solve globally. We use different variants of the RBC model to as-

sess how well our method handles nonlinear model solutions, with a particular focus on i)

strong state dependencies and ii) the presence of heterogeneous agents. Crucially, the com-

plete nonlinear models can still be solved using traditional solution techniques, allowing

us to benchmark our approach against an existing global model solution technique.

4.1 Model Environment: Variants of the Real Business Cycle Model

We choose three different variants of the quantitative real business cycle (RBC) describd

below to evaluate our method: i) a simplified but nonlinear version that can be solved

analytically, ii) a medium-sized version with state-dependent investment costs that result

in distinct nonlinearities, and iii) a heterogeneous agents version with partially uninsurable

income risk in line with Krusell and Smith (1998). We work with the global solution for all

variants.

RBC Model We use an extended stochastic RBC model composed of a firm sector, a house-

hold sector, and a government sector to test the predictive power of our method. The firm

sector comprises of (i) final goods producers who bundle the intermediate goods to pro-

duce the final good Yt, (ii) intermediate goods producers who hire labor services Nt for the

wage wt, rent capital Kt at price rt from perfectly competitive markets, adjust their capital

utilization ut, but face monopolistic competition in the goods market as they produce dif-

ferentiated goods, and (iii) producers of capital goods who invest It subject to adjustment

costs to produce capital that they sell at price qt.
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Households earn income from supplying labor Nt and capital Kt, and earn profits Πt

from owning the firm sector. Households spend their income for consumption Ct and

capital Kt+1. Finally, the government levies distortionary labor- and capital-income taxes

with tax rates τL and τK , besides a value-added tax on consumption τC . Raising taxes is

purely distortionary since the government returns the tax revenues to the household via

lump-sum transfers Tt. Importantly, the model features up to five shocks. The markup µt,

TFP At, labor-augmenting productivity Zt, discount factor shock ζt, and depreciation rate

δ0t generate stochastic fluctuations.

We show the system of equations below, while the full derivation of the model equations

is delegated to Appendix B. The production sector is described by:

Yt = At (utKt)
α (ZtNt)

1−α, (19)

rt + qtδ(ut) =
α

µt

Yt
Kt

, (20)

wt =
1− α

µt

Yt
Nt

, (21)

qt [δ1 + δ2(ut − 1)] =
α

µt

AtKt

(
utKt

ZtNt

)α−1

=
α

µt

Yt
ut
, (22)

qt =

[
1− ϕt

(
It
Kt

− δ0t

)κ−1
]−1

, (23)

Kt+1 = (1− δ(ut))Kt + It −
ϕt

κ

(
It
Kt

− δ

)κ

Kt. (24)

where ϕt = ϕ. The equations characterizing the representative household are:

(1 + τC)Ct + qtkt+1 =
(
qt + (1− τK)rt

)
kt + (1− τL)wtNt + Tt +Πt, (25)

qtuC(Ct, Nt) = βEt

[
ζt+1

ζt

(
qt+1 + (1− τK)rt+1

)
uC(Ct+1, Nt+1)

]
(26)

− uN(Ct, Nt) = (1− τL)wtht
uC(Ct, Nt)

1 + τC
, (27)

where uC and uN denote the deviation of household utility function with respect to Ct and

Nt. The government sector and the market clearing condition are given as:

Tt = τCCt + τKrtKt + τLwtNt, (28)

Yt = Ct + It (29)
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The different shock processes21 are given as:

lnAt = (1− ρA)

(
lnA− σ2

A

2

)
+ ρA lnAt−1 + ϵAt , with ϵAt ∼ N(0, σ2

A), (30)

lnZt = (1− ρZ)

(
lnZ − σ2

Z

2

)
+ ρZ lnZt−1 + ϵZt , with ϵZt ∼ N(0, σ2

Z), (31)

lnµt =

(
lnµ+

σ2
µ

2

)
+ ϵµt , with ϵµt ∼ N(0, σ2

µ), (32)

δ0t = δ0 + ϵδt , with ϵδt ∼ N(0, σ2
δ ), (33)

ln ζt = −(1− ρζ)
σ2
ζ

2
+ ρζ ln ζt−1 + ϵζt , with ϵζt ∼ N(0, σ2

ζ ). (34)

We vary the activated shocks in the different model variants. Next, we illustrate the model

variants and their specific features.

Variant 1: Analytical solution To begin with, we illustrate our methodology using a rep-

resentative agent version of the model, which admits an analytical solution following Brock

and Mirman (1972). The following proposition summarizes the assumptions necessary to

obtain an analytical solution to the model.

Proposition 1. If depreciation is deterministic and full, δ(ut) = 1, capacity utilization is fixed
at ut = 1, there are no capital adjustment costs ϕ = 0, the discount factor shock is inactive
σ2
ζ = 0, and per period felicity is of King, Plosser and Rebelo (1988) (KPR)-form given by

u(Ct, Nt) = lnCt − ω
N1+γ

t

1+γ
. Then the policy functions of the representative household are

Nt =

[
µ(1− τL)(1− α)

µtω(1 + τC)(µ− αβ)

] 1
1+γ

, (35)

Ct =

(
1− αβ

µ

)
Yt, (36)

Kt+1 =
αβ

µ
Yt, (37)

with Yt = AtK
α
t (ZtNt)

1−α. Given the policy functions of the household, we can determine the
prices in the economy. The transfers to the households are then determined by the government
budget constraint.

Proof. See Appendix B.1.

21 Note the different formulation of the markup shock. The formulation with a positive adjustment for the
variance ensures that Et[µ

−1
t ] = µ−1.
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Proposition 1 presents the solution for the representative agent economy. Fluctuations in

the markup µt drive changes in labor supply Nt, while shocks to productivity (At, Zt) affect

output Yt. Consumption Ct and capital investment Kt+1 are linear functions of output. This

version serves as a simple starting point to illustrate the fit of our method to standard RBC

environments.

Variant 2: State-Dependent Adjustment Costs To highlight the importance of working

with a global solution, we solve a model that includes an additional non-linear element.

We assume that the adjustment costs are state-dependent instead of being constant:

ϕt =

ϕ if Kt > K

ϕ if Kt ≤ K
(38)

where ϕ ≥ ϕ ≥ 0.22 The non-linear adjustment costs directly affect the price of capital and

the law of motion of capital.

Variant 3: Heterogeneous Households Next, we introduce household heterogeneity in

capital holdings kit, in their profit income Πit, and in their idiosyncratic income component

hit. Households optimize their utility function subject to their individual budget constraint

(1 + τC)cit + qtkit+1 =
(
qt + (1− τK)rt

)
kit + (1− τL)wthitnit + Tt +Πit. (39)

Households face a borrowing constraint, such that they are prohibited from holding nega-

tive amounts of assets. Individual productivity hit evolves according to

log hit = −(1− ρh)
σ2
h

2
+ ρh log hit−1 + ϵhit with ϵhit ∼ N(0, σ2

h). (40)

with ϵhit as a normally distributed shock with variance σ2
ϵ and mean zero.

The solution of the household problem can be characterized by the Euler equation on

capital

qtuC(cit, nit) = βEt

[
ζt+1

ζt

(
qt+1 + (1− τK)rt+1

)
uC(cit+1, nit+1)

]
, (41)

(42)

22 Note that capital good producers take the adjustment costs as given, as they depend on aggregate capital.

21



Calibrations We calibrate the different model version to conventional values, which are

summarized in Appendix B.

Calculation of the Euler Equation Error For all models, we compute the Euler Equation

Error to assess the accuracy of the solution. We compute the relative Euler equation error

along for a simulation of the economy going forward for T periods as follows:

1

N

T∑
t=1

N∑
i=1

(
(u′)−1(βEt[Rt+1u

′(cit+1)])

cit
− 1

)
(43)

where Rt+1 =
ζt+1

ζt

qt+1+(1−τKt+1)rt+1

qt
, and u′ and (u′)−1 denote marginal utility and the inverse

of marginal utility, respectively. For the economies with heterogeneous agents, we average

the Euler equation error across the number of grid points N , we use to discretize the

household distribution. For the representative agent variants 1 and 2, we set N = 1.

4.2 Generative Economic Modeling

We are now using our generative economic modeling approach to solve the different vari-

ants of the real business cycle model, illustrated above.

4.2.1 Generative Economic Modeling with an Analytical Solution

We decompose the initial model into three submodels with varying shock combinations:

(i) TFP and labor-augmenting productivity shocks, (ii) TFP and markup shocks, (iii) labor-

augmenting productivity and markup shocks. We use the analytical solution, adapted for

the varying shock combinations, to simulate each economy for 10000 periods. We combine

the simulations in a single dataset, where we set the shocks to zero if they are not active in

the submodel. The neural network is then trained for 1000 epochs with a batch size of 100

on the combined dataset. The neural network converges to a very training loss, with no

evidence of overfitting. The loss for the training and validation samples is shown, together

with a detailed description of the neural network architecture, in Appendix B.

Results Figure 5 illustrates the performance of our methodology. The left panel presents

the approximation error between the predicted value and the analytical values of capital,

Kt. The errors are very small and centered around zero. When compared to the com-

plete model, for which a neural network is trained on data generated from the analytical

solution, the magnitude of the error is very similar. In contrast, the approximation error

increases substantially when using an incomplete model. We use here the submodel that

22



Figure 5 Approximation error of the capital stock Kt (LHS) and Euler equation error (RHS) in the analytical
RBC model. For the approximation error, we compare the simulated value to the true value for 10000
periods for our generative modeling approach (blue). It is compared to using the complete model (orange)
and incomplete model (green), for which we train a neural network using data generated from the full
analytical solution and from a single submodel, respectively. The Euler equation error uses the predictions of
generative economic modeling and calculates how well the model fulfills the model-implied Euler equation.
We compare the Euler equation error for our generative method (blue) to the Euler equation error generated
by the complete model (orange).

features only Markup shocks. Figure C.1 (in the Appendix) illustrates the prediction errors

for consumption and investment, which have similar patterns to those observed for capital.

The right panel of Figure 5 shows the Euler equation error. We obtain average Euler

equation errors of 0.00009 and 0.00011 for the complete model and using generative

economic modeling, respectively. Consequently, we demonstrate that our method achieves

a level of precision comparable to the complete model trained on the true data-generating

process, mirroring the findings for the analytical asset pricing model. The last important

criterion is how well our approach approximates the moments of the true data generating

process. For instance, the standard deviation of capital is 0.0413 in both the generative

and complete model, while an incomplete model version would result in a substantially

lower value. For instance, a version without the TFP shock generates only about half the

standard deviation for capital.

4.2.2 Generative Economic Modeling with a Nonlinear Model

In this section, we illustrate our methodology using a medium-sized version of our RBC

model. The model features a strong non-linearity in the adjstment costs. We abstract from

shocks to labor-augmenting productivity Zt and to the markup µt, hence shocks to TFP At

are the only drivers of supply-side fluctuations, but we complement them through shocks

to the discount factor ζt+1 and the depreciation rate δ0t. We assume that households remain

ex-ante and ex-post identical, such that we can represent the household side with a repre-
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sentative agent. Moreover, households have a common utility function that is separable in

consumption and labor:

u(Ct, Nt) =
C1−σ

t − 1

1− σ
− ω

N1+γ
t

1 + γ
(44)

The optimal household behavior can be described by the Euler equation and the optimal

labor supply condition:

C−σ
t = βEt

[
ζt+1

ζt
(qt+1 + (1− τK)rt+1)C

−σ
t+1

]
,

ωNγ
t =

1− τLt
1 + τC

wtC
−σ
t .

Contrary to the former section, we allow for capacity utilization choice and allow for

capital adjustment costs with a nonlinear specification as illustrated in equations (24) and

(38).

Generative Economic Modeling We decompose the underlying complete model into

three submodels with varying shock combinations: (i) TFP and discount factor shocks, (ii)

TFP and depreciation shocks, and (iii) discount factor and depreciation shocks. The sub-

models are solved with global methods, specifically policy function iteration, to account for

all nonlinear features.23 Using our global solution, we simulate time series data for three

submodels for 10000 periods. We combine the simulations in a single dataset, where we

set the shocks to zero if they are not active in the submodel. Specifying the neural network

similarly to before, it is then trained for 1000 epochs with a batch size of 100. The loss for

the training and validation samples converges to low values. The details on the training

and architecture are in Appendix B.

Results Figure 6 reports the performance of our algorithm for the medium-sized non-

linear DSGE model, using capital as an example. Comparing the generative approach’s

predictions with the complete model demonstrates that our methodology provides a strong

fit, even for a medium-sized DSGE model with nonlinearities. The predicted values closely

align with the true values, addressing the issue of under- and overprediction observed in

the analytical version from the previous section. In contrast, the approximation error in-

creases when using an incomplete model. We use here the submodel that features only

23 Within the class of policy function iteration methods, we use time iteration with linear interpolation as
in Richter, Throckmorton and Walker (2014) and Bianchi, Melosi and Rottner (2021). The parameter
choices are conventional and chosen to ensure strong nonlinearities in the shock propagation, as shown in
Appendix B.2.
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Figure 6 Approximation error of the capital stock Kt (LHS) and Euler equation error (RHS) in the nonlinear
RBC model. For the approximation error, we compare the simulated value to the true value for 10000
periods for our generative modeling approach (blue). It is compared to using the complete model (orange)
and incomplete model (green), for which we train a neural network using data generated from the full
analytical solution and from a single submodel, respectively. The Euler equation error uses the predictions of
generative economic modeling and calculates how well the model fulfills the model-implied Euler equation.
We compare the Euler equation error for our generative method (blue) to the Euler equation error generated
by the complete model (orange).

depreciation shocks. The error is particularly larger on the left-hand side of the distribu-

tion, in line with our state-dependent adjustment cost function for investment. Figure C.3

(in the Appendix) shows the prediction errors for other key variables.

The right panel of Figure 5 shows the Euler equation error. On average, we obtain

Euler equation errors of 0.0032 and 0.0035 for the complete model and using generative

economic modeling, respectively. The histograms illustrate that our method achieves a

level of precision comparable to the complete model trained on the true data-generating

process. As before, we observe substantial differences in the moments if we were to use

only a submodel. Overall, our generative approach effectively captures the dynamics of the

underlying model, even in the case of pronounced nonlinearities.

4.2.3 Generative Economic Modeling with Heterogeneous Agents

This section applies our methodology to a model with heterogeneous households. In con-

trast to earlier sections, we now incorporate both ex-ante and ex-post heterogeneity, fol-

lowing the framework of Krusell and Smith (1998). As a result, the joint distribution of

wealth and income becomes a state variable when solving the model.

To simplify the solution of the model, we abstract from endogenous capacity utilization

(ut = 1) and set capital adjustment costs to zero (ϕt = κ = 0). Households maximize a

standard CRRA utility function:
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u(cit) =
c1−σ
it − 1

1− σ

subject to the budget constraint in equation (39). Since labor supply entails no disutility,

households supply one unit of labor inelastically. We shut down government activity and

keep three aggregate shocks: productivity (At), discount factor (ζt), and depreciation (δt).

Generative Economic Modeling We decompose the underlying complete model into

three submodels with varying shock combinations: (i) TFP and discount factor shocks,

(ii) TFP and depreciation shocks, and (iii) discount factor and depreciation shocks. Finally

we also solve the model version with all three shocks active. A detailed description of the

solution algorithm for the heterogeneous agent model with multiple aggregate shocks is

provided in Appendix B.3. Here, we briefly summarize the approach. We solve the house-

hold problem using the endogenous grid point method of Carroll (2006), and simulate the

economy using the non-stochastic simulation method from Young (2010). Since the model

includes aggregate shocks, households require a perceived aggregate law of motion (ALM)

for aggregate capital. Following Krusell and Smith (1998), we assume a state-dependent

log-linear ALM and update it iteratively until convergence, while ensuring that the gap

between the true and perceived laws is minimal, in line with the concerns raised by Den

Haan (2010). We extend the original method to allow for a nonlinear law of motion with

multiple aggregate shocks. We ensure that the gap between the true and perceived laws

is minimal. Figure B.4 (in the appendix) shows that the model-generated capital series

closely match the ALM, with a maximum deviation of less than 0.01. We solve the model

using four idiosyncratic income states and four aggregate states per shock, which we ap-

proximate as four-state Markov chains using the method of Tauchen (1986). Unlike Krusell

and Smith (1997) and Krusell and Smith (1998), we abstract from any dependence of id-

iosyncratic income risk on aggregate TFP.24 We use an exponentially space asset grid with

100 grid points and 20 grid points for aggregate capital. The full model therefore spans

44 × 100× 20 = 512,000 grid points.

Using our global solution, we simulate time series data for three submodels over 10000

periods. We combine the simulations into a single dataset, where we set the shocks to zero

if they are not active in the submodel. Specifying the neural network similarly to before,

it is then trained for 1000 epochs with a batch size of 100. The loss for the training and

24 Although we can allow for a correlation between idiosyncratic and aggregate risk, with more than two
aggregate states there exist various possibilities to allow for cyclical variation in idiosyncratic income risk.
We leave the exploration of the impact of cyclical idiosyncratic income risk on the performance of our
method for future research.
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Figure 7 Approximation error of the capital stock Kt (LHS) and Euler equation error (RHS) in the heteroge-
neous agent RBC model. For the approximation error, we compare the simulated value to the true value for
10000 periods for our generative modeling approach (blue). It is compared to using the complete model (or-
ange) and incomplete model (green), for which we train a neural network using data generated from the full
analytical solution and from a single submodel, respectively. The Euler equation error uses the predictions of
generative economic modeling and calculates how well the model fulfills the model-implied Euler equation.
We compare the Euler equation error for our generative method (blue) to the Euler equation error generated
by the complete model (orange).

validation samples converges to low values. The details on the training and architecture

are in Appendix B.

Results Figure 7 evaluates the performance of our algorithm for the heterogeneous agent

model of capital, where the approximation error of capital, Kt, and the Euler equation

error are shown. In the left panel, we compare the predictions of the generative approach

with those of the complete model. The comparison demonstrates that our methodology

provides a strong fit, even in the presence of household heterogeneity. In contrast, the

approximation error increases when using an incomplete model. We use here the submodel

that features only TFP- and discount-factor-shocks. Figure C.4 (in the Appendix) shows the

prediction errors for other aggregate variables.

The right panel of Figure 7 shows the Euler equation error. The histograms illustrate that

our method achieves basically the same level of precision as the complete model trained

on the true data-generating process. On average, we achieve Euler equation errors of

0.00806 and 0.00807 for the complete model and using generative economic modeling,

respectively. Finally, we can compare moments simulated from the solution obtained from

the policy functions. As before, our methodology replicates moments close to the true data

generation process, while we observe substantial differences in the moments if we only

use a submodel. Overall, our generative approach effectively captures the dynamics of the

underlying model.

To calculate the Euler Equation Error of the model, we also applied our methodology
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Figure 8 Approximation error of the policy functions of the heterogeneous agent economy. The plots indicate
the prediction error for the consumption policy function at the borrowing constraint over four income states
in descending order. We compare here the simulated value to the true value for 10000 periods for our
generative modeling approach (blue). It is compared to using the complete model (orange) and incomplete
model (green), for which we train a neural network using data generated from the full analytical solution
and from a single submodel, respectively.

to predict the policy functions of households at each individual point of the discretized

individual state space. Figure 8 illustrates the fit of the method when predicting the policy

functions for households at the borrowing constraint. As the figure shows, the fit is excel-

lent on the household level, as well. Additional results, corroborating the previous findings,

are available in Appendix C. Finally, our method captures the moments of the model again

very well, satisfying another key objective. This result speaks to the heterogeneous agent

literature, as it substantially facilitates the global solution of heterogeneous agent models.

5 HANK with an Occasionally Binding Financial Friction

In this section, we use our method of generative economic modeling to globally solve a

medium-scale HANK model with an occasionally binding financial friction. The financial

frictions occasionally prevent firms from hiring as many workers as they desire and intro-

duce a nonlinearity that requires a global solution to be fully taken into account. How-
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ever, solving such a high-dimensional model directly is computationally very demanding,

as the dimensionality of the state space increases with each additional state variable and

aggregate shock. To address this challenge, we rely on our generative economic model-

ing approach. Importantly, the model’s complexity precludes us from directly solving the

complete version. Instead, we evaluate the accuracy of our approach using our established

evaluation criteria - the Euler equation error.

5.1 Description of the Model

The model is a HANK model that includes both idiosyncratic and aggregate risk. House-

holds insure against both types of risks by saving in liquid assets subject to a borrowing

limit. Intermediate goods are produced using labor under monopolistic competition, where

firms face Rotemberg price adjustment costs. The firms also face an occasionally binding

cash-in-advance constraint limiting production in times of financial distress. A final goods

bundler bundles intermediate goods into a final good. The government raises taxes to issue

bonds and for government consumption, while the central bank sets the nominal interest

rate as a function of price inflation. The model features shocks to the discount factor,

shocks to aggregate productivity, monetary policy shocks, as well as shocks to the ability of

firms to borrow through the financial sector.

Households There exists a continuum i ∈ [0, 1] of households which choose to obtain

utility from consumption cit and leisure, and save in liquid assets bit+1 such as to insure

against idiosyncratic income fluctuations in labor productivity hit. Labor productivity fol-

lows an AR(1) process in logs as in equation (40). Households maximize the following

utility:

E0

∞∑
t=0

βtζtu(cit, nit), (45)

where nit denotes their labor supply and ζt denotes the shock to the discount factor. We

assume that the discount factor shock follows an AR(1) process as in equation (34). We

assume that household felicity is of Greenwood, Hercowitz and Huffman (1988) (GHH)

form together with a CRRA specification:

u(cit, nit) =

(
cit − ωhit

n1+γ
it

1+γ

)1−σ

− 1

1− σ
, (46)
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where ω is a scalar for multiplying the disutility of supplying labor. Households maximize

utility subject to the budget and borrowing constraint

cit + bit+1 = (1− τt)wtnithit +Rtbit + (1− τt)dit, (47)

bit+1 ≥ B̄ (48)

where bit+1 denotes savings of the household, τt the income tax, Rt = 1+rt the real interest

rate, and profits dit from owning the firm sector. We distribute profits proportional to the

idiosyncratic productivity hit. B̄ denotes the exogenous borrowing limit of households.

Firms A final goods producer bundles a continuum of differentiated varieties j ∈ [0, 1]

into a final good according to a Dixit-Stiglitz aggregator

Yt =

(∫ 1

0

y
η−1
η

jt dj

) η
η−1

, (49)

with elasticity of substitution η. This yields an optimal demand for each variety j of

yjt =

(
pjt
Pt

)−η

Yt, (50)

where Pt = (
∫ 1

0
p1−η
jt dj)

1
1−η denotes the price level. Each differentiated variety is produced

by an intermediate goods producer with index j using labor as input. Production follows

the linear production function

Yjt = AtNjt, (51)

where At denotes aggregate productivity that follows an AR(1) process in logs. Interme-

diate goods producers are subject to quadratic price adjustment costs in logarithmic price

changes. Hence, for price-setting, the firm maximizes

E0

∞∑
t=0

βtYt

{(
pjt
Pt

−MCt

)(
pjt
Pt

)−η

− η

2κ

(
log

pjt
pjt−1

)2
}
, (52)

with a time-constant discount factor.The producer’s first-order condition gives rise to a New

Keynesian Phillips curve in goods price inflation

log(πt) = βEt

[
log(πt+1)

Yt+1

Yt

]
+ κ

(
MCt −

η − 1

1

)
, (53)
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where Πt is the gross inflation rate Πt ≡ Pt

Pt−1
, and MCt is the real marginal costs. The price

adjustment then creates real costs η
2κ
Yt log(Πt)

2.

Finally, intermediate goods producers are subject to a financing constraint when paying

their labor bill. Firms need to borrow their wage bill from a perfectly competitive financial

intermediary at a zero intratemporal interest rate; however, due to agency costs are not

able to do so up to the full level of their revenue. Hence firms face the following borrowing

constraint:

wtNjt ≤ λtyjt, (54)

where λt denotes the fraction of output that firms are allowed to borrow. We assume λt to

follow an AR(1) process in logs:

lnλt = −(1− ρλ)
σ2
λ

2
+ ρλ lnλt−1 + ϵλt with ϵλt ∼ N(0, σ2

λ). (55)

This implies that if λt < MCt, the household is constrained in its labor bill and firms can

only demand labor up to the wage rate wt = λtAt. Hence, if firms are financially constraint,

they cannot produce up to their capacity, because they are limited in the wages they can

pay. This introduces a nonlinearity in the economy, which makes the solution of the model

numerically more demanding.

Government The government operates a monetary and a fiscal authority. The monetary

authority controls the nominal interest rate on liquid assets, while the fiscal authority issues

government bonds to finance deficits and adjusts expenditures to stabilize debt in the long

run and output in the short run.

We assume that monetary policy sets the nominal interest rate it on bonds following a

Taylor-type rule:

(1 + it+1) = Πϕπ
t exp(ιt), (56)

where ϕπ governs the extent to which the central bank attempts to stabilize inflation. ιt is

an exogenous monetary policy shock that follows an AR(1) process in logs:

ln ιt = −(1− ρι)
σ2
ι

2
+ ρι ln ιt−1 + ϵιt with ϵιt ∼ N(0, σ2

ι ) (57)

The real interest rate is then determined using a Fisher relation Rt = 1 + rt =
1+it
Πt

Moreover, we assume that the government issues bonds according to the rule

Bt+1

B̄
=

(
RtBt

R̄B̄

)ρB
(
Πt

Π̄

)−γπ (Tt

T̄

)−γT

, (58)
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using tax revenues, Tt = τYt, to finance government consumption, Gt, and interest on

outstanding debt. The coefficients B̄, Π̄, and T̄ are normalization constants. ρB captures

whether and how fast the government seeks to repay its outstanding obligations, BtRt.

For ρB < 1, the government actively stabilizes real government debt, and for ρB = 1,

the government rolls over all outstanding debt, including interest. The coefficients γπ
band γT capture the cyclicality of debt issuance: for γπ = γT = 0, new debt does not

actively react to tax revenues and inflation, but only to the value of outstanding debt; for

γπ > 0 > γT , debt is countercyclical; for γπ < 0 < γT , debt is procyclical. We assume that

government expenditure Gt adjusts such that the government budget constraint is satisfied

Gt +RtBt = Bt+1 + Tt

Market Clearing Market clearing requires that the labor market, the bond market, as well

as the goods market, clear. GHH preferences imply that households supply labor according

to nit = ( (1−τ)wt

ω
)

1
γ = Nt where the last equality follows from

∫ 1

0
hitdi = 1. Hence, labor

market clearing is achieved if

Nt =


(

(1−τ)AtMCt

ω

) 1
γ

if unconstrained(
(1−τ)Atλt

ω

) 1
γ

if constrained
. (59)

Bonds market clearing is achieved if

Bt+1 =

∫ 1

0

bit+1di, (60)

and goods market clearing is achieved if

(1− η

2κ
(lnΠt)

2)Yt = Ct +Gt, (61)

where the left-hand side indicates production adjusted for price-adjustment costs.

Computational Challenges The problem faces three computational challenges. First, to

solve the model, we need to employ the algorithm of Krusell and Smith (1997) to forecast

the forward-looking part Et

[
log(πt+1)

Yt+1

Yt

]
in the Philips curve, as well as today’s inflation

Πt using a perceived law-of-motion. This requires solving and simulating the model mul-

tiple times to update the law of motion until convergence. This issue is identical to the

computation issue illustrated in section 3.2.3. Second, we need to calculate the market-

clearing inflation rate in the simulation step to update the prediction of the nowcast of
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inflation, which is necessary for the solution of the household problem. Hence, after solv-

ing the household problem globally, we need to introduce a root-finding step. Concretely,

we guess an inflation rate Π̃t that then determines the nominal interest rate it+1, relevant

for the savings choice of the households. Given the aggregate states (Bt, λt, At, ζt, ιt), we

impose labor market clearing by using equation (59) and then update the guess for infla-

tion Π̃t until bond market clearing is achieved. This additional step requires us to solve the

household problem (although only for one backward iteration) multiple times. This adds

additional computational time. Third, adding the cash-in-advance constraint implies that

the economy features nonlinear dynamics if intermediate good firms are financially con-

strained. This requires additional runtime to solve for accurate perceived laws of motion.

Calibration We calibrate the submodels to have values of Bayer et al. (2019) with ex-

ception to the parameters guiding the bond rule. As we solve the model globally, the rule

parameters have important implications for the dynamics and the stability of the economy.

We set the parameters such as to ensure nondivergent paths of government debt. All pa-

rameter values, as well as plots illustrating the goodness of fit of our solution can be found

in Appendix D.

5.2 Generative Economic Modeling Solution

The global solution of this model with conventional methods remains numerically in-

tractable. Consequently, we solve the model using our methodology of generative eco-

nomic modeling. For that, we generate time series data for three satellite models, each

subject to two out of the four possible shocks. We solve and simulate satellite models with

(i) financial, and TFP shocks, (ii) financial and discount factor shocks, and (iii) financial

and monetary shocks. We also solve a model version without financial shocks. For the

approximation of the true solution, we solve three satellite models, each including one of

the three non-financial shocks. Hence we solve and simulate models with (i) TFP shocks,

(ii) discount factor shocks, and (iii) monetary shocks. We use this solution of the model

to understand the effect of introducing financial shocks into a HANK model. We train

two neural networks, each on the combined datasets of our satellite models. The neural

networks consist of five hidden layers, each with 128 neurons, using the CELU activation

function. The optimizer employed is AdamW, and the training minimizes the mean squared

error between the predicted and true values. The learning rate follows a cosine annealing

schedule, starting at 10−3 and decaying to 10−10.

The left panel of Figure 9 reports the mean squared error during the training. The loss

for the training sample is around 1e-5. The validation loss indicates that the neural network
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Figure 9 Training convergence and histogram of Euler equation error for the HANK model with an occasion-
ally binding constraint. The left panel shows the loss over the training and validation samples. An epoch
is completed when all the training or validation sample points are utilized. The vertical axis is expressed in
logarithmic scale. The right panel shows the histogram of the Euler equation error, where we calculate how
well the model fulfills the model-implied Euler equation.

does not overfit. The right panel shows the histogram of the Euler equation error. While

the error is slightly larger than for the Krusell-Smith model, this is natural as the model

is considerably more complex. At the same time, the shape of the histogram is also very

similar to before and well behaved, without any large outliers. Taken together, we consider

the Euler equation error in a very reasonable range and find this outcome very reassuring.

5.3 Results: Financial Friction Shock and Aggregate Risk

Having solved the HANK model with an occasionally binding financial friction, we now

investigate the transmission of shocks and the implications of aggregate risk.

5.3.1 Impact of a Financial Friction Shock

First, we are interested in the transmission of financial shocks in our model. To analyze

the impact of a financial friction shock on the economy, we investigate the generalized

impulse responses of the model to financial shocks of varying sizes. Concretely, we illustrate

response of the economy to a shock in λt of −5% and −7.5% relative to its mean. Figure

(10) illustrates the generalized impulse response function of the solved model to these

shocks.

A drop in λt, the variable determining the space of the financial sector for intratemporal

lending induces a recession for both shock sizes. As result of the drop, firms are constraint

and hire less labor Nt, which reduces production Yt. As result of this negative supply shock,

consumption Ct drops, while inflation Πt increases. The central bank increases the nominal

interest rate It going forward in response to the hike in inflation, thereby increasing the real
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Figure 10 Generalized impulse response functions for a heterogeneous agent New Keynesian economy with a
financial friction, solved with generative economic modeling. Each panel reports percentage deviations from
the stochastic steady state. We compute the responses by initializing the economy at its stochastic steady
state and applying a one-time innovation to the financial wedge λt, which follows an AR(1) process. The
same policy functions are used in both experiments, once with a 5% and once with a 7.5% decline in λt. One
period corresponds to one year in the baseline calibration.

interest rate Rt. Bond supply Bt increases by the government, triggering countercyclical

government expenditure.

Besides having these qualitative responses in common, the economy features nonlinear-

ity in response to different sizes of shocks. The 7.5% decrease in financial space λt triggers

a substantially larger recession than the 5% decrease in lambda. This manifests itself in a

larger reduction in labor Nt, a larger decrease in output Yt, and a larger decrease in con-

sumption Ct. As the shock to the supply side is more severe, inflation Πt increases more,

triggering a larger increase in the nominal interest rate It. The shock is so contractionary
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that the marginal costs for production does even increases in response to the shock before

dropping, indicating that in the first period the costs of production increase due to the

financial friction.

To summarize, shocks to λt that serves as a financial shock here triggers nonlinear dy-

namics in response to different shock sizes. Such dynamics can be especially important

when trying to understand financial crisis. Generative economic modeling serves as a

useful tool to solve models with nonlinear dynamics or heterogeneity, while keeping it

numerically tractable.

5.3.2 Implications of Increased Aggregate Risk

Second, we are interested in the interaction of different sources of risk with each other.

For that, we compare the dynamics of the economy with four shocks with an economy

that only features the financial shock and a TFP shock. Through this analysis, we aim

to understand how the presence of more shocks in the model shapes the response of the

model. Figure (11) illustrates impulse responses of the economy with four shocks to a TFP

shock compared to the impulse response of the satellite economy with only the TFP shock

and the lambda shock.

The comparison between the two impulse responses shows how incorporating more

shocks in a model alters the dynamics of the model. For all variables illustrated, the re-

sponses of the variables after the financial shock is attenuated in the model with all four

shocks compared to only featuring a TFP shock. Hence, for the model environment we

solve here, introducing more shocks beyond the financial shock and the TFP shock reduces

the response of endogenous variables to the financial shock. One economic explanation

for this is that in the presence of more aggregate shocks, households have a larger precau-

tionary incentive. Hence, knowing that they will face larger aggregate volatility with more

shocks, they build up more insurance through precautionary savings. In response to one of

these shocks realizes, households rely on this savings and react less to the aggregate shock.

In the context of our model here, integrating more shocks dampens the response of

the economy to the nonlinear financial shock. The methodology of generative economic

modeling allows users to integrate more shocks to study the implications that integrating

more shocks has for their model.

6 Conclusion

Our study introduces generative economic modeling, a novel approach that combines con-

ventional solution methods with artificial intelligence to overcome computational barriers
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Figure 11 Generalized impulse response functions for a heterogeneous agent New Keynesian economy with a
financial friction, solved with generative economic modeling. Each panel shows percentage deviations from
the stochastic steady state. We initialize the economy at its stochastic steady state and apply a one time
innovation to the financial wedge λt, which follows an AR(1) process. In both cases the AR(1) shock implies
an initial decline of 7.5% in λt. We compare two solution networks: one trained on all shocks (blue) and
one trained only on the financial shock and a TFP shock (orange). One period corresponds to one year in the
baseline calibration.

in solving complex dynamic economic models. By using neural networks trained on data

generated from satellite models, we provide an alternative to standard deep learning-based

approaches, which often require extensive fine-tuning and can suffer from instability due to

their endogenous feedback loops. In contrast, our methodology ensures stability and scal-

ability by using precomputed solutions from conventional methods, allowing for efficient

training and accurate approximations of the full economic model.
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The results demonstrate that this approach can successfully capture model dynamics

with high precision, yielding prediction errors comparable to those of deep neural networks

trained on full model data. We also show that the Euler equation error can be used as a

direct measure of fit for our approach, enabling an ex-post validation on a case-by-case

basis. Importantly, our method extends the applicability of conventional global solution

methods by using recent advances in artificial intelligence. This is particularly valuable for

models featuring higher-order nonlinearities and heterogeneous agents, where the curse

of dimensionality poses significant computational challenges.

Our general approach offers several promising avenues in the future. First, it can be

applied to more complex environments, such as solving nonlinear HANK models by training

on simplified RANK and linearized HANK models. Second, it has the potential to enhance

model estimation techniques, where fast and reliable solutions are critical. Lastly, training

the neural network on multiple distinct models would potentially open up the possibility of

using it as a general starting point for economic analysis, as different model features could

then be easily added or removed.
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Friedl, A., Kübler, F., Scheidegger, S. and Usui,
T. (2023). Deep uncertainty quantification: with
an application to integrated assessment models.
Tech. rep. Working Paper University of Lausanne.

Gornemann, N., Kuester, K. and Nakajima, M. (2016).
Doves for the Rich, Hawks for the Poor? Distribu-
tional Consequences of Monetary Policy. Interna-
tional Finance Discussion Paper 2016 (1167), 1–
40.

Gorodnichenko, Y., Maliar, L., Maliar, S. and Naubert,
C. (2021). Household savings and monetary pol-
icy under individual and aggregate stochastic
volatility.

Greenwood, J., Hercowitz, Z. and Huffman, G.
(1988). Investment, Capacity Utilization, and the
Real Business Cycle. American Economic Review
78 (3), 402–417.

Gu, Z., Lauriere, M., Merkel, S. and Payne, J. (2024).
Global solutions to master equations for contin-
uous time heterogeneous agent macroeconomic
models. arXiv preprint arXiv:2406.13726.

Guerrieri, V. and Lorenzoni, G. (2017). Credit Crises,
Precautionary Savings, and the Liquidity Trap.
The Quarterly Journal of Economics 132 (3), 1427–
1467.

Han, J., Yang, Y. and E, W. (2021). DeepHAM: A
global solution method for heterogeneous agent
models with aggregate shocks.

Hayashi, F. (1982). Tobin’s Marginal q and Average
q: A Neoclassical Interpretation. Econometrica 50
(1), 213.

Heer, B. and Maussner, A. (2024). Dynamic general
equilibrium modeling. Springer.

Hintermaier, T. and Koeniger, W. (2010). The method
of endogenous gridpoints with occasionally bind-
ing constraints among endogenous variables.
Journal of Economic Dynamics and Control 34
(10), 2074–2088.

Ilut, C. L., Luetticke, R. and Schneider, M. (2025).
HANK’s Response to Aggregate Uncertainty in an
Estimated Business Cycle Model. Tech. rep. Na-
tional Bureau of Economic Research.

Judd, K. L. (1998). Numerical Methods in Economics.
Jungerman, W. (2024). Dynamic Monopsony and Hu-

man Capital. Working Paper.
Kahou, M. E., Fernández-Villaverde, J., Gomez-

Cardona, S., Perla, J. and Rosa, J. (2024). Spooky
Boundaries at a Distance: Inductive Bias, Dynamic
Models, and Behavioral Macro. Tech. rep. Na-
tional Bureau of Economic Research.

Kahou, M. E., Fernández-Villaverde, J., Perla, J. and
Sood, A. (2021). Exploiting symmetry in high-
dimensional dynamic programming. Tech. rep.
National Bureau of Economic Research.

Kaplan, G., Moll, B. and Violante, G. L. (2018). Mon-
etary Policy According to HANK. American Eco-
nomic Review 108 (3), 697–743.

Kaplan, G. and Violante, G. L. (2018). Microeconomic
heterogeneity and macroeconomic shocks. Jour-
nal of Economic Perspectives 32 (3), 167–194.

Kase, H., Melosi, L. and Rottner, M. (2022). Esti-
mating Nonlinear Heterogeneous Agents Models
with Neural Networks. Tech. rep. DP17391. Paris
& London: CEPR Discussion Paper No. 17391.

King, R. G., Plosser, C. I. and Rebelo, S. T. (1988).
Production, growth and business cycles. Journal
of Monetary Economics 21 (2-3), 195–232.

Krusell, P. and Smith, A. A. (1997). Income and
Wealth Heterogeneity, Portfolio Choice, and Equi-
librium Asset Returns. Macroeconomic Dynamics
1 (02).

— (1998). Income and Wealth Heterogeneity in the
Macroeconomy. Journal of Political Economy 106
(5), 867–896.
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Appendix

A Appendix: Solution of the Asset Pricing Model

This section illustrates our methodology using an analytical asset-pricing model and de-

velops intuition for why the methodology works. In all our applications, the solution of

a model is a set of policy functions that express controls as a function of state variables.

In this first analytical example, the control variable we are looking for is the price of a

nominal bond qt. Let’s assume that the price satisfies the Euler equation:

qt = βEt

[
1

Πt+1

C−γ
t+1

C−γ
t

]
= βEt

[
exp

(
− πt+1 − γ∆ct+1

)]
with πt ≡ lnΠt, ∆ct = lnCt − lnCt−1, where Πt is gross inflation between period t and

t−1, Ct denotes consumption, as well as β, and γ are the discount factor and risk-aversion,

respectively. We can write the equation more compact as

qt = βEt exp(ψ⃗
′yt+1), (62)

where yt = [πt,∆ct]
′ and ψ⃗ = [−1,−γ]′. Hence, the control variable qt is a forward-looking

variable, which depends nonlinearly on the expectations over the dynamics of the state

variables yt+1. In quantitative models, the policy functions we aim to solve for have a

similar form as (62). For example, households make consumption-savings decisions and

firms make capital accumulation decision by forming expectations about the future. To

solve for the exact policy function, we need to introduce a law of motion for the states. We

assume that the dynamics of the states yt are described by a VAR(1) without intercept

yt = A1yt−1 + et, (63)

with et = ηϵt, where ϵt is distributed N(0, I). η is a ny × nϵ matrix, where ny = 2 is

the number of states, and nϵ is the number of shocks. This implies that et is distributed

according to a N(0,Σ), with variance-covariance matrix Σ = ηη′. We give the shocks an

economic interpretation by assuming ϵt = [ϵat , ϵ
ζ
t , ϵ

µ
t ]

′. Hence, the first shock denotes a

TFP-shock, the second shock denotes a discount factor shock, and the last shock denotes

a markup shock. The η matrix then denotes the loadings of the shocks onto the state

variables. With these assumptions, the solution for the asset price qt can be expressed as25

25 The VAR(1) specifies that the vector of variables yt is distributed according to a multivariate normal dis-
tribution. Together with the identity Et exp(xt+1) = exp(µx + 1

2Σx) for a normally distributed vector
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qt = β exp

(
ψ⃗′µt +

1

2
ψ⃗′Vtψ⃗

)
(64)

where µt = A1yt, denotes the conditional mean forecast, and Vt = Σ the conditional

variance of the variables in yt. Let ηij, and aij denote the entries in the i’th row and j’th

column of the shock impact matrix η and the matrix of the VAR A1 respectively. Then the

full solution for the price of the asset can be written as

qt = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(η11 + γη21)

2 + (η12 + γη22)
2 + (η13 + γη23)

2
])
. (65)

Equation (65) expresses how the bond price depends on the inclusion of different shocks to

our dynamic system of equations. While the first line components remain unchanged, the

second line changes depending on the shocks that we include in the model. Consequently,

this model serves as a natural illustration for the functionality of our approach.

When solving a simplified version of the above model that contains only two of the three

shocks, the entries η1· and η2· are equal to zero, where the · is a placeholder for the shock

which is not included, anymore. Let us denote the resulting equilibrium price without a

shock i by q\it . Consequently, simplified model versions feature the prices

q
\a
t = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(0 + γ · 0)2 + (η12 + γη22)

2 + (η13 + γη23)
2
])

(66)

q
\ζ
t = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(η11 + γη21)

2 + (0 + γ · 0)2 + (η13 + γη23)
2
])

(67)

q
\µ
t = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(η11 + γη21)

2 + (η12 + γη22)
2 + (0 + γ · 0)2

])
(68)

xt+1 ∼ N(0,Σx) we obtain the closed form expression for the asset price.
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Equations (66) - (68) illustrate that shutting down one individual shocks reduces the price

of the risk-free bond compared to the specification with all shocks by a constant. Moreover,

we can also illustrate the solution of the bond price with only one shock active at each

time. For each shock i, we indicate the equilibrium price of this bond as qi:

qat = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(η11 + γη21)

2 + (0 + γ · 0)2 + (0 + γ0)2
])

(69)

qζt = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(0 + γ · 0)2 + (η12 + γη22)

2 + (0 + γ0)2
])

(70)

qµt = β exp

(
− (a11 + γa21) πt − (a12 + γa22)∆ct

+ 1
2

[
(0 + γ · 0)2 + (0 + γ0)2 + (η13 + γη23)

2
])

(71)

B Appendix: Real Business Cycle Model

We use an extended stochastic RBC model composed of a firm sector, a household sector,

and a government sector to test the predictive power of our method. The firm sector com-

prises (i) final goods producers who bundle the intermediate goods, (ii) intermediate goods

producers who rent out labor services and capital from perfectly competitive markets but

face monopolistic competition in the goods market as they produce differentiated goods,

and (iii) producers of capital goods who turn final goods into capital subject to adjustment

costs.

Households earn income from supplying labor nit and capital kit, and earn profits Πit

from owning the firm sector. Households spend their income for consumption cit and

capital investment kit+1.

Finally, the government levies distortionary labor- and capital-income taxes with tax

rates τL and τK , besides a value-added tax on consumption τC . Raising taxes is purely

distortionary since the government returns the tax revenues to the household via lump-

sum transfers Tt.
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Production sector: The production sector features final, intermediate, and capital

goods producers. Final goods producers bundle varieties j of differentiated intermediate

goods according to the Dixit-Stiglitz aggregator

Yt =

(∫
y

1
µt
jt dj

)µt

, (72)

with elasticity of substitution µt−1
µt

. We allow the markup µt to evolve stochastically as an

AR(1) in its log

lnµt = (1− ρµ)

(
lnµ−

σ2
µ

2

)
+ ρµ lnµt−1 + ϵµt with ϵµt ∼ N(0, σ2

µ). (73)

The shock ϵµt is normally distributed with mean zero and variance σ2
µ. Firms can adjust

prices in each period, hence markup shocks only redistribute between profits and the factor

incomes.26

Final goods producers purchase a variety of goods from a continuous range of intermedi-

ate producers indexed by j. Production of intermediate goods occurs according to constant

returns to scale Cobb-Douglas production technology which combines labor Njt and capital

services ujtKjt taking into account capital utilization ujt according to

Yjt = At (ujtKjt)
α (ZtNjt)

1−α, (74)

where α denotes the capital share in the Cobb-Douglas production function, At denotes

aggregate productivity and Zt denotes labor-augmenting technology. Firms can choose the

intensity with which they use their capital stock Kjt by adjusting the capacity utilization

ujt. An intensity higher than normal results in increased depreciation of capital according

to δ(ujt) = δ0t + δ1(ujt − 1) + δ2/2(ujt − 1)2, which is an increasing an convex function of

utilization if δ1, δ2 > 0.

The producer minimizes costs, wtNjt − [rt + qtδ(ujt)]Kjt, where rt and qt are the rental

rate and the (producer) price of capital goods and wt is the real wage. Factor markets

are perfectly competitive and all intermediate goods producers are symmetric. Therefore,

we drop all indices j and only refer to the aggregate variables. We can characterize the

26 Each differentiated good is offered at price pjt, the aggregate price level is Pt =

(∫
p

1
1−µt
jt dj

)1−µt

and

demand for each of the varieties is yjt =
(

pjt

Pt

) 1−µt
µt

Yt. In a symmetric equilibrium, this boils down to
pjt = Pt ∀j and yjt = Yt ∀j and we do not need to keep track of prices hereafter.
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first-order conditions for labor and effective capital as

rt + qtδ(ut) =
α

µt

Atut

(
utKt

ZtNt

)α−1

=
α

µt

Yt
Kt

, (75)

and wt =
1− α

µt

AtZt

(
utKt

ZtNt

)α

=
1− α

µt

Yt
Nt

. (76)

The optimal utilization choice is given by

qt [δ1 + δ2(ut − 1)] =
α

µt

AtKt

(
utKt

ZtNt

)α−1

=
α

µt

Yt
ut
. (77)

As a result, aggregate profits are Πt = µtYt. The logarithm of productivities At and Zt

evolve stochastically according to AR(1) processes

lnAt = (1− ρA)

(
lnA− σ2

A

2

)
+ ρA lnAt−1 + ϵAt with ϵAt ∼ N(0, σ2

A), (78)

and lnZt = (1− ρZ)

(
lnZ − σ2

Z

2

)
+ ρZ lnZt−1 + ϵZt with ϵZt ∼ N(0, σ2

Z). (79)

ρi and σ2
i with i ∈ {A,Z} denote the autocorrelation of the log-technology shocks and the

variance of their normally distributed innovations, while A and Z denote the unconditional

means of the stochastic processes. Moreover, we allow time-varying depreciation rates δ0t,

which evolves according to

δ0t = δ0 + ϵδt with ϵδt ∼ N(0, σ2
δ ). (80)

Finally, capital goods producers take the relative price of capital goods, qt, as given when

determining their output. They face capital adjustment costs as in Hayashi (1982) and

maximize

max
{It}∞t=0

E0

∞∑
t=0

Λ0,t

{
qt

[
It −

ϕt

κ

(
It
Kt

− δ0t

)κ

Kt

]
− It

}
. (81)

where κ > 1. To enhance the complexity of the mode, the adjustment costs feature a non-

linear element. In particular, ϕt is state-dependent and depends on the level of aggregate

capital:

ϕt =

ϕ if Kt > K

ϕ if Kt ≥ K
(82)

where K ≥ K ≥ 0. Note that capital good producers take the adjustment costs as given as

they depend on aggregate capital.

46



Optimization yields the optimality condition

qt =

[
1− ϕt

(
It
Kt

− δ0t

)κ−1
]−1

. (83)

Each capital goods producer will adjust its production, until (83) is satisfied. Since all

capital goods producers are symmetric, we obtain a law of motion for aggregate capital

Kt+1 = (1− δ(ut))Kt + It −
ϕt

κ

(
It
Kt

− δ

)κ

Kt. (84)

Having specified the production sector, we now describe the households in the economy.

Household sector: There exists a unit continuum of (potentially heterogeneous) house-

holds indexed by i ∈ [0, 1] which maximize their lifetime utility discounted by the factor β.

The households obtain utility from consumption cit and disutility from supplying labor nit.

To smooth consumption, households accumulate capital kit+1. The household’s objective

function is

Uit = max
cit,nit,kit+1

Et

∞∑
t=0

βtζtu(cit, nit), (85)

with Et denoting the expectation operator over all stochastic processes given the informa-

tion set as of time t and u(cit, nit) denotes the per period felicity function of the household

over consumption cit and labor nit. ζt is a stochastic aggregate shock to the discount factor

in period t. The logarithm of the discount factor shock ζt evolves stochastically according

to an AR(1) process

ln ζt = −(1− ρζ)
σ2
ζ

2
+ ρζ ln ζt−1 + ϵζt with ϵζt ∼ N(0, σ2

ζ ). (86)

ρζ denotes the autocorrelation of the logarithmic discount factor shock, and the shock ϵζt is

normally distributed with mean zero and variance σ2
ζ . Households optimize the objective

function (85) subject to the budget constraint

(1 + τC)cit + qtkit+1 =
(
qt + (1− τK)rt

)
kit + (1− τL)wthitnit + Tt +Πit. (87)

rt and wt denote the interest rate and wage rate as specified above and hit denotes house-

holds’ idiosyncratic income component. τC , τK , and τL denote the value-added-tax, the

capital income tax, and the labor income tax, while Tt denotes the transfers the households
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obtain from the government. Πit denotes the individual part in aggregate profits. In all

applications, households face a borrowing constraint, such that they are prohibited from

holding negative amounts of assets. Individual productivity hit evolves according to

log hit = −(1− ρh)
σ2
h

2
+ ρh log hit−1 + ϵhit with ϵhit ∼ N(0, σ2

h). (88)

with ϵhit as a normally distributed shock with variance σ2
ϵ and mean zero.

The solution of the household problem can be characterized by the Euler equation on

capital and the optimal labor supply schedule below

qtuC(cit, nit) = βEt

[
ζt+1

ζt

(
qt+1 + (1− τK)rt+1

)
uC(cit+1, nit+1)

]
(89)

−uL(cit, nit) = (1− τL)wthit
uC(cit, nit)

1 + τC
. (90)

uC(cit, nit) =
∂u
∂cit

(cit, nit) denotes the partial derivative of the felicity function with respect

to consumption and uL(cit, nit) = ∂u
∂nit

(cit, nit) denotes the partial derivative of the felicity

function with respect to labor.

Government sector: The government levies distortionary capital and labor income tax-

ation at flat rates τL and τK , and claims a value-added-tax τC on consumption. It uses the

tax revenues to finance lump-sum transfers Tt to the household. Therefore, the role of the

government is purely to redistribute between factor incomes and consumption and leisure.

The budget constraint is

Tt = τCCt + τKrtKt + τLwtNt. (91)

Government transfers Tt adjust residually to make the government budget constraint hold.

Market clearing and equilibrium: The labor market, the capital market, and the goods

market have to clear at all periods. Labor and capital market clearing requires

Nt =

∫ 1

0

nitdi and Kt =

∫ 1

0

kitdi. (92)

Given these aggregate quantities, prices are determined by their marginal products on the

factor inputs as denoted in equations (75) and (76). The goods market clears when

Yt = Ct + It, (93)
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where It = Kt+1 − (1− δ(ut))Kt +
ϕ
κ

(
It
Kt

− δ0

)κ
Kt denotes aggregate investment into next

periods capital stock net of adjustment costs and Ct =
∫ 1

0
citdi is aggregate consumption.

The goods market clears due to Walras-Law whenever the capital and the labor market

clear.

Dynamic equilibrium: We define a dynamic equilibrium in this economy as follows.

Firms and households take prices as given. Households behave optimally to maximize

their lifetime utility (85) subject to the associated budget constraint (87) and the stochastic

processes. Firms choose their factor inputs to maximize profits given their Cobb-Douglas

production technology until the optimality conditions (75), (76), and (77). Lump sum

taxes adjust such that the government budget constraint (91) holds, while the labor and

asset markets (92), and the goods market (93) clear.

B.1 The analytical model

Derivation of the analytical model The part below derives the proof related to the an-

alytical model in section 4.2.1. To solve the model analytically, we abstract from shocks

to the discount factor (ζt) and depreciation rate (δt). We keep the shocks to technology

(At), productivity (Zt), shocks to the markup (µt). Finally, we abstract from capital in-

come taxation (τK = 0) and assume full depreciation (δ0t = 1).27 Moreover, we abstract

from household heterogeneity and let households be ex-ante identical by assuming away

differences in idiosyncratic income hi0 = 1 and Πit = Πt ∀ i and initial capital holdings are

identical ki0 = K0 ∀ i. We make households ex-post identical by disregarding idiosyncratic

income risk σ2
h = 0. The absence of ex-ante or ex-post heterogeneity enables us to repre-

sent the household side through a representative agent. Therefore, we drop the individual

index i to describe the variables of interest.

Proof. The proof employs a guess-and-verify approach. Guess that the policy function for

savings is given by Kt+1 = ΓYt. Substituting the guess into the goods market clearing

condition (93) while imposing the parameter restriction δ = 1 yields

Ct = (1− Γ)Yt.

27 The combination of the assumptions renders the model unrealistic, as already noted by Brock and Mirman
(1972) themselves. We do not employ the model for realistic reasons, but because it provides us with an
analytical benchmark we can use. This also motivates the choice of our shocks.
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Table B.1 Parameter values of the analytical Brock and Mirman (1972) model

Parameter Value Description Parameter Value Description

Households Exogenous processes
β 0.96 Discount factor A 1.0 Steady state TFP
γ 5 Inverse Frisch ρa 0.9 TFP persistence
ω 1.0 Scale labor disutility σa {0.0, 0.01, 0.05} TFP std.

Z 1.0 Steady state labor prod.
Firms ρz 0.9 Labor prod. persistence
α 0.33 Capital share σz {0.0, 0.01, 0.05} Labor prod. std.
δ 1.0 Depreciation rate µ 1.1 Steady State Markup

ρµ 0.0 Markup persistence
Government σµ {0.0, 0.01, 0.05} Markup std.
τL 0.0% Labor tax rate level
τR 0.0% Capital tax rate level
τC 0.0% Value-added tax rate level

NOTE - All parameters in the table are calibrated to a yearly frequency.

We use the two guesses and substitute into the Euler equation (89)

1

Ct

= βEt

[
α

µt+1

Yt+1

Kt+1

Ct+1

]
⇔ 1

(1− Γ)Yt
= βEt

[
α

µt+1(1− Γ)Kt+1

]
,

from which it is straightforward to see that Γ = αβ
µ

given that Et
1

µt+1
= µ−1 with ρµ = 0.

Note that the value-added-tax (1 + τC) drops from the Euler equation, since it is constant

over time. To obtain the policy function (35) we substitute the guesses with specified Γ

into the labor-supply condition (??)

(1− τNt )wt

(1 + τC)Ct

= ωNγ
t ⇔ (1− τNt )(1− α)

µt(1 + τC)(1− Γ)Nt

= ωNγ
t ,

from which we obtain expression (35) when solving for Nt.

With KPR-preferences with log-felicity over consumption the income and substitution

effect of wage changes cancel out. Therefore, only shocks to the wage tax rate τLt and the

markup µt impact the level of equilibrium labor supply.

Calibration Table B.1 illustrates the parameter values that we use for solving the model.

We largely use standard values from the literature, but some variables require further ex-

planation. First, we have a steady-state markup µ of 1.5, which is very high. We introduce

such a high markup value such as to amplify the effects of markup shocks on the economy.

Moreover, we shut down the government by setting all tax rates equal to zero. Finally,

we do not only simulate the economy with fixed volatilities of the shocks but allow for

different volatility levels. While the model only features three shocks, the shocks can have

different volatilities, such that we generate data sets for all three shock combinations with
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Figure B.1 Training and validation convergence for the analytical variant of the RBC model. The figure shows
the loss over the training sample (left) and validation sample (right). An epoch is completed when all the
training or validation sample points are utilized. The vertical axis is expressed on a logarithmic scale.

different volatilities. This also challenges the surrogate network since it needs to learn the

model dynamics for different shock volatilities.

Neural network and training The network architecture features five hidden layers with

128 neurons each, linear activation functions in the input and output layers, and CELU

activations in all hidden layers. We train the network using the AdamW optimizer to mini-

mize the mean squared error between predicted and true values. The learning rate follows

a cosine annealing schedule, starting at 10−3 and decaying below 10−6 over the course of

training. The dataset is divided into a training and a validation sample. Figure B.1 shows

the mean squared residual for the training and validation samples, which shows that the

loss converges to 10−7. While the validation loss is slightly larger, there is no overfitting, as

the non-increase in the validation loss highlights.

B.2 Nonlinear version

Table B.2 presents the parameter choices for solving the model. Most parameters align with

standard values in the literature but are calibrated at a quarterly frequency. Compared to

the model in Section 3.1, we introduce partial depreciation, a capacity utilization choice, a

lower Frisch elasticity of labor supply, and capital adjustment costs. Additionally, we incor-

porate nonlinear capital adjustment costs by allowing ϕt to take values ϕ̄ and ϕ depending

on the capital stock. The other parameters are standard.

The model features strong nonlinearities as the impulse response functions (IRFs) in
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Table B.2 Parameter values of the nonlinear medium-sized RBC model

Parameter Value Description Parameter Value Description

Households Firms
σ 1 Risk aversion α 0.33 Capital share
β 0.99 Discount factor δ0 0.025 Depreciation rate
γ 1 Inverse Frisch δ1 0.43 Depreciation rate
ω 0.5 Scale labor disutility δ2 0.43 Depreciation rate

κ 2 Cap. adj. cost curvature
ϕ̄ 2.5 High slope of cap. adj. cost

Exogenous processes ϕ 0.025 Low slope of cap. adj. cost
A 1.0 Steady state TFP
ρa 0.95 TFP persistence Government
σa 0.01 TFP std. τL 0.0% Labor tax rate level
ρζ 0.95 Discount factor persistence τR 0.0% Capital tax rate level
σζ 0.05 Discount factor std. τC 0.0% Value-added tax rate level
σδ 0.004 Depreciation std.

NOTE - All parameters in the table are calibrated to a quarterly frequency.

Figure B.2 IRFs and Nonlinear Propagation of the TFP Shock

Figure B.2 highlight. In this simulation, we compare the impact of an expansionary and

contractionary three-standard deviation TFP shock. We display the percentage deviation

from the stochastic steady state and mirror the IRFs of the negative TFP for easier compar-

ison. The state-dependent investment costs result in strong differences between positive
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Figure B.3 Training and validation convergence for the non-linear medium scale RBC model. The figure
shows the loss over the training sample (left) and validation sample (right). An epoch is completed when all
the training or validation sample points are utilized. The vertical axis is expressed on a logarithmic scale.

and negative shocks. We observe a similar behavior when evaluating the preference and

discount rate shock. This is an important precondition for our analysis as we want to

evaluate the performance of our approach in a highly nonlinear environment.

Neural network and training The network architecture features five hidden layers with

128 neurons each, linear activation functions in the input and output layers, and CELU

activations in all hidden layers. The optimizer employed is AdamW, and training minimizes

the mean squared error between the predicted and true values. The learning rate follows

a cosine annealing schedule, starting at 10−3 and decaying to 10−10. The dataset is divided

into a training and a validation sample. Figure B.3 shows the mean squared residual for

the training and validation samples, which shows that the loss converges to 1.8 × 10−3.

Similarly as before, we do not observe an overfitting.

B.3 Heterogeneous agent version

Solution approach This subsection presents the solution to the heterogeneous agent

model following the methodology of Krusell and Smith (1997) and Krusell and Smith

(1998).28 In the consumption-savings problem, households require a prediction of next

period’s capital given today’s state space. With heterogeneous agents, this would typically

require households to track the entire distribution of households over the state space, Θt

28 The code is available at https://github.com/Fabio-Stohler/KS1998.
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as an additional state variable, which renders the problem numerically intractable. To ad-

dress this, Krusell and Smith demonstrate that households do not need to keep track of the

full distribution Θt, but a few moments of the distribution suffice to forecast future capital.

Specifically, they approximate the law of motion for capital using its mean, allowing house-

holds to form expectations based on a simplified perceived law of motion. Let A⃗, ζ⃗, and

δ⃗ denote the discretized grid of aggregate productivity, discount factor, and depreciation

shock with NA, Nζ , and Nδ shocks. We generalize on the original paper and assume that

the law of motion takes the following state-dependent functional form:

lnKt+1 = β0 +

NA∑
i=1

βA,i 1{At=Ai} +

Nζ∑
j=1

βζ,j 1{ζt=ζj} +

Nδ∑
k=1

βδ,k 1{δt=δk} (94)

+ βK lnKt +

NA∑
i=1

γA,i 1{At=Ai} lnKt +

Nζ∑
j=1

γζ,j 1{ζt=ζj} lnKt +

Nδ∑
k=1

γδ,k 1{δt=δk} lnKt

Our extension allows for an arbitrary many realizations of the discretized shocks and

allows for both the slope and the intercept to vary with each (discretized) aggregate state

value. The solution algorithm consists of an inner and an outer loop. The outer loop

iterates until the coefficients in the regression equation (94) converge. Let

βn =
(
βn
0 ,
{
βn
A,i

}NA

i=1
,
{
βn
ζ,j

}Nζ

j=1
,
{
βn
δ,k

}Nδ

k=1
, βn

K ,
{
γnA,i

}NA

i=1
,
{
γnζ,j
}Nζ

j=1
,
{
γnδ,k
}Nδ

k=1

)′
denote the vector of regression coefficients for the perceived law of motion of iteration n

of the algorithm. Convergence is determined by checking whether the coefficients remain

unchanged across iterations. If the coefficients changed by less then a small ϵ, the algorithm

terminates.29

The inner loop iterates until the household problem is globally solved for a given per-

ceived law of motion for capital. To solve the household side, we discretize the space

(kit, hit, Kt, At, ζt, δt) and use the endogenous grid-point method (EGM) of Carroll (2006)

to solve the household problem given the stochastic processes and the perceived law of

motion. Household policies are updated iteratively until the (inverse) marginal values

of consumption converge. Once the household problem is solved globally, we aggregate

and simulate the economy for T periods using the stochastic simulation method of Young

(2010). Finally, using the simulated time series of capital and the aggregate states, we

estimate the regression equation (94) to update the law of motion.

We illustrate the algorithm as follows. Let k⃗, h⃗, denote the discretized vectors of indi-

29 We also verify that the true law of motion for capital closely matches the perceived law of motion, which
is generally the case.
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vidual capital holdings, individual productivity, respectively.

1. For each realization of aggregate states {Kt, At, ζt, δt} compute labor Lt (which de-

pends on the aggregate state), as well as the interest rate rt and the wage rate wt as

the marginal products of capital and labor. For each realization of the individual state

space {kit, hit, Kt, At, ζt, δt} compute household incomes.

2. Initialize the coefficients for the law of motion (94). Typically, the intercepts (β0, β1,

β2, β3) are set to zero, and the slopes (β4, β5, β6, β7) to one.

3. Given the coefficients for the law of motion, solve the household problem using

EGM30:

(a) Initialize guesses for the policy functions c0it, k
0
it defined on the state space

(kit, hit, Kt, At, ζt, δt). Create an initial guess for the marginal value function
∂V 0

it

∂kit
= (1 + r)

∂u(c0it)

∂cit
. The superscript denotes the iteration step mm of the EGM

algorithm.

(b) For each realization of the aggregate state today {Kt, At, ζt, δt} forecast next

period’s capital stock using the perceived law of motion. Let K̃t+1 denote the

forecasted capital stock according to the perceived law of motion. Interpolate

the marginal value ∂V n−1
it

∂kit
from the exogenous grid K⃗ onto the perceived value

in the next period K̃t+1. Finally, compute the expected marginal value by inte-

grating over the realizations of the aggregate {At, ζt, δt} and idiosyncratic states

{hit} and discount the expected value with the discount factor.31

(c) Apply the inverse of the marginal utility function to the interpolated expected

marginal value to find the policy function of consumption ĉit on the endogenous

grid k̃it.

(d) Compute the endogenous grid points k̃it from the budget constraint given the

policy ĉit.

(e) Interpolate the consumption policy function ĉit from the endogenous grid k̃it

onto the exogenous grid k⃗ to obtain an updated policy function cmit .

(f) Enforce the borrowing constraint.

30 There exist numerous resources that go into detail in the illustration of the method. We only highlight the
differences that occur due to the presence of aggregate risk. The interested reader might consult Carroll
(2006), Barillas and Fernández-Villaverde (2007), Hintermaier and Koeniger (2010), and the appendix of
Bayer et al. (2019).

31 Note that the idiosyncratic risk depends on the realization of the aggregate risk.
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(g) Check convergence by verifying for a small ϵ, whether the condition |u′−1
(

∂V m
it

∂kit

)
−

u′−1
(

∂V m−1
it

∂kit

)
| < ϵ is true. | · | denotes the Euclidean norm. If the condition is

not satisfied, repeat steps (b)–(g).

4. With the converged global policy functions, we aggregate and simulate the economy

using stochastic simulation of Young (2010) for T periods:

(a) We set the initial capital stock to the value from the deterministic steady state of

a representative agent economy and denote the capital stock as K1.32

(b) In period t, we have capital stock Kt, which is generally off-grid. To evaluate the

policy functions of the household, we evaluate the individual policy function at

Kt by interpolating from the exogenous grid K⃗ on the current capital stock Kt.

Evaluate the policy functions at the current aggregate state {At, ζt, δt}.

(c) Given household policies evaluated at the state realizations today, we update the

household distribution using the stochastic simulation method of Young (2010).

(d) Repeat steps (b) and (c) for T periods.

5. Discard the first 1000 periods as a burn-in sample. Use the remaining time series to

update the perceived law of motion by regressing the logarithm of the capital stock

on the aggregate states and the lagged logarithm of the capital stock as in equation

(94). Denote the resulting regression coefficients as β̃
m

6. Check whether |β̃n − βn−1| < ϵ for a small ϵ. If the condition is met, stop; otherwise,

update the coefficients as βn = φβ̃
n
+ (1− φ)βn−1 with φ ∈ (0, 0.5) and repeat steps

(3) - (6).

Note that the description above accounts for all aggregate shocks but also accommodates

cases with fewer aggregate shocks by keeping some of them fixed. We apply steps (1) to

(6) to each satellite model, generating a dataset that is then used to train the surrogate

model.

Calibration Table B.3 reports the parameter values used to solve the satellite models and

simulate the corresponding data. For household and firm behavior, we adopt the param-

eterization from Krusell and Smith (1998), calibrated at an annual frequency. The exoge-

nous shock processes are also specified using standard annual values commonly found in

the literature.

32 We also find a distribution that has the mean of K1 and initialize the simulation with this distribution.
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Table B.3 Parameter values of heterogenous agent model

Parameter Value Description Parameter Value Description

Households Exogenous processes
β 0.95 Discount factor ρh 0.9 Idiosy. risk persistence
σ 1.0 Risk aversion σh 0.15 Idiosy. risk std.

A 1 Steady State TFP
Firms ρa 0.75 TFP persistence
α 0.36 Capital share σa 0.02 TFP std.
δ 0.1 Steady State depreciation ζ 1 Steady State Discount fact.

ρζ 0.75 Discount fact. persistence
Government σζ 0.02 Discount Fact. std.
τL 0.0% Labor tax rate level σδ 0.01 Depreciation std.
τR 0.0% Capital tax rate level
τC 0.0% VAT rate level

NOTE - All parameters in the table are calibrated to a yearly frequency.

(a) Model with TFP and zeta shocks (b) Model with TFP and delta shocks

(c) Model with zeta and delta shocks (d) Model with TFP, zeta, and delta shocks

Figure B.4 Model implied series of capital and perceived aggregate law of motion (ALM)

Moreover, figure B.4 illustrates the perceived law of motion of the households in com-

parison to the true law of motion for capital in the economy. As the plot illustrates, the

perceived law of motion and the true law of motion closely align, with the error between

the two lines generally being below one percent of the capital stock.
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Figure B.5 Training and validation convergence for the RBC model with heterogeneous agents. The figure
shows the loss over the training sample (left) and validation sample (right). An epoch is completed when all
the training or validation sample points are utilized. The vertical axis is expressed on a logarithmic scale.

Neural network architecture and training The network architecture features five hid-

den layers with 128 neurons each, linear activation functions in the input and output lay-

ers, and CELU activations in all hidden layers. The optimizer employed is AdamW, and

training minimizes the mean squared error between the predicted and true values. The

learning rate follows a cosine annealing schedule, starting at 10−3 and decaying to 10−10.

The dataset is divided into a training and a validation sample. Figure shows the mean

squared residual for the training and validation samples. The loss converges to 10−5 and

there is no overfitting.

C Prediction Errors of Additional Endogenous Variables

This section illustrates additional results of of the error distributions generated by our

methodology for different endogenous variables.

Figure C.1 illustrates the empirical errors for consumption Ct and labor Lt in the an-

alytical RBC model. The complete model, as well as the generated model achieve very

low prediction errors, which are centered around zero. Figure C.2 shows the identical fig-

ure, however zoomed out beyond relative errors of 0.3 percent. The figure shows that the

complete and the generative models indeed achieve very low prediction errors while the

incomplete submodel generates very large relative errors, that reach up to 80 percent.

Figure C.3 shows the fit of the nonlinear RBC model for other endogenous variables.

With the model featuring rich nonlinearities due to the state dependency in investment
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Figure C.1 Approximation error of consumption Ct and investment It for our generative modeling approach
for the analytical RBC model zoomed in on the histogram. We compare here the simulated value to the true
value for 10000 periods for our generative modeling approach (blue). It is compared to using the complete
model (orange) and incomplete model (green), for which we train a neural network using data generated
from the full analytical solution and from a single submodel, respectively.

Figure C.2 Approximation error of consumption Ct and investment It for our generative modeling approach
for the analytical RBC model. We compare here the simulated value to the true value for 10000 periods
for our generative modeling approach (blue). It is compared to using the complete model (orange) and the
incomplete model (green), for which we train a neural network using data generated from the full analytical
solution and from a single submodel, respectively.

adjustment costs, the prediction error is largest for this proof-of-concept; however, it is

consistently low. For the incomplete model, we see a left shift of the histogram for some

variables due to the nonlinear adjustment costs.

Figure C.4 illustrates the fit of generative economic modeling for investment It and

aggregate consumption Ct. For both variables, the performance of generative economic

modeling is similar to that of the complete model trained on the full dataset and consis-

tently superior to the performance of the incomplete model, trained only on a submodel.

The prediction error for investment It has a larger variance, as the model features large

depreciation shocks, which introduce additional variability in investment.

Finally, figure C.5 illustrates the prediction errors of the individual policy functions in
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Figure C.3 Approximation error of consumption Ct and investment It for our generative modeling approach
for the nonlinear RBC model. We compare here the simulated value to the true value for 10000 periods
for our generative modeling approach (blue). It is compared to using the complete model (orange) and
incomplete model (green), for which we train a neural network using data generated from the full analytical
solution and from a single submodel, respectively.

Figure C.4 Approximation error of consumption Ct and investment It for our generative modeling approach
for the heterogeneous agent model. We compare here the simulated value to the true value for 10000 periods
for our generative modeling approach (blue). It is compared to using the complete model (orange) and
incomplete model (green), for which we train a neural network using data generated from the full analytical
solution and from a single submodel, respectively.

the heterogeneous agent model for nine points on the idiosyncratic state space. The figure

illustrates that generative economic modeling achieves comparable errors to the complete
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Figure C.5 Approximation error of individual consumption policies for different points at the state space for
our generative modeling approach for the heterogeneous agent model. We compare here the simulated value
to the true value for 10000 periods for our generative modeling approach (blue). It is compared to using
the complete model (orange) and incomplete model (green), for which we train a neural network using data
generated from the full analytical solution and from a single submodel, respectively.

model trained on the full data generation process, while achieving substantially lower er-

rors than the incomplete model trained only on the data from one submodel.
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Table D.1 Parameter values of HANK model with financial frictions

Parameter Value Description Parameter Value Description

Households Firms
β 0.95 Discount factor η 20.0 Elasticity of substitution
σ 1.0 Utility parameter κ 0.4 Slope of the Phillips curve
γ 1.0 Curvature of utility
ω 0.76 Scale of disutility of labor
ρϵ 0.9 Persistence of idiosync. shocks
σϵ 0.25 Std. dev. of idiosyncratic shocks

Government Exogenous processes
ϕΠ 1.5 Taylor rule parameter ρa 0.75 Persistence of TFP shocks
γΠ 1.107 Reaction of debt to inflation σa 0.0047 Std. dev. of TFP shocks
γT 0.5 Reaction of debt to tax revenue ρζ 0.5 Persistence of disc. factor shocks
ρB 0.522 Persistence of the debt rule σζ 0.012 Std. dev. of disc. factor shocks
bss 0.9 Steady-state government debt ρλ 0.5 Persistence of financial shocks
Πss 1.035 Steady-state inflation σλ 0.02 Std. dev. of financial shocks
iss 1.053 Steady-state nom. interest rate ρι 0.5 Persistence mon. policy shocks
τ 0.2 Steady-state tax rate σι 0.01 Std. dev. of mon. policy shocks

NOTE — Values are reported to three decimals where applicable. All parameters in the table are calibrated to a yearly frequency.

D Heterogeneous Agent Model with Financial Frictions

To solve the financial HANK model, we build on the algorithm described in Section B.3. In

contrast to the baseline implementation, which relies on a single perceived law of motion,

the financial HANK model requires two: one to forecast the forward-looking component of

the Phillips curve, and another to nowcast current inflation. A detailed description of the

underlying algorithm can be found in the Appendix of Bayer et al. (2019), which served as

the main reference for our implementation.

The parameter values used to solve the model are shown in Table D.1. We adopt an

annual calibration, which speeds up computation by reducing the discount factor. This

choice lowers the computational burden associated with solving the household problem

which is the main numerical bottleneck. The calibration thus reflects an annualized version

of the model in Bayer et al. (2019). For the exogenous shock processes, we adopt parameter

estimates from the similar HANK model in Kase, Melosi and Rottner (2022), while the

parameters governing the financial shock are set directly.

Figure D.1 compares the estimated equilibrium laws of motion for current inflation and

the forward-looking inflation expectation with their true simulated realizations. As the fig-

ure shows, the perceived and true paths are virtually indistinguishable. The mean squared

error between the perceived and true laws of motion over the entire simulation horizon is

below one percent.
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Figure D.1 Perceived Law of Motion and True Law of Motion of Financial HANK model
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