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Abstract

We introduce a novel approach for solving quantitative economic models: generative
economic modeling. Our method combines neural networks with conventional solu-
tion techniques. Specifically, we train neural networks on simplified versions of the
economic model to approximate the complete model’s dynamic behavior. Relying on
these less complex submodels circumvents the curse of dimensionality, allowing the use
of well-established numerical methods. We demonstrate our approach across settings
with analytical characterizations, nonlinear dynamics, and heterogeneous agents, em-
ploying asset pricing and business cycle models. Finally, we solve a high-dimensional
HANK model with financial frictions to highlight how aggregate risk amplifies the pre-
cautionary motive.
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1 Introduction

The advances in artificial intelligence provide substantial opportunities for quantitative
economics by shifting the production-possibility frontier of modeling. Deep learning has
emerged as a powerful tool for solving dynamic economic models that were previously
considered intractable. The curse of dimensionality - first articulated by Bellman (1957) -
typically limits the complexity of economic models to only a few state variables. However,
deep learning can help to tame this problem, as discussed in Ferndndez-Villaverde, Nufio
and Perla (2024). Unfortunately, successfully employing deep learning in practice often
requires meticulous and detailed adjustments tailored to the specific model at hand, which
makes it challenging to employ without major investments. In contrast, established con-
ventional solution methods, though constrained by the curse of dimensionality, are already
specifically designed and optimized for particular types of economic models and feature
well-understood emergence properties. We propose a novel approach that combines the
strengths of both artificial intelligence and conventional solution methods: generative eco-
nomic modeling.

Our approach employs neural networks to approximate the economic model. Rather
than training directly on the full model, we train the network on a collection of simplified
models, which we call submodels. Each submodel contains only a subset of states and
features and therefore represents only part of the full model’s dynamics.! By relying on
submodels, we can solve the simpler problems with conventional methods and avoid the
curse of dimensionality. Because each submodel captures only some features, we design
the collection with overlapping features to ensure coverage of all features present in the full
model. We simulate each submodel separately and merge the resulting data into a single
training set. A neural network is then trained on this combined dataset to approximate the
full model and recover interactions across states and features.?

Our method belongs to the class of generative artificial intelligence because we employ
a neural network to generate results for the complete model that includes all features and
states, something we have not used for the training process. Generative artificial intelli-
gence has achieved significant success, especially in the context of large language models,
which are very large deep learning models. While this success also holds promise for our
approach, the generative performance of neural networks in our context of economic mod-
eling is a priori not clear.

1 Researchers often work with a simplified version of the model of interest because computational constraints
limit feasible complexity. Our approach formalizes how to leverage a set of submodels and apply deep
learning to approximate a richer model.

2 The neural network serves as a surrogate model that mimics the behavior of a more complex system.
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We validate our approach by computing Euler equation errors to assess the accuracy of
the resulting model solution. Specifically, we evaluate the errors in the complete model
with all shocks and features while using policy functions learned from networks trained
only on a collection of submodels with limited features. This delivers an out-of-sample
check against the optimality conditions of the full model without having to solve the full
model with conventional methods. Moreover, this metric can provide guidance in design-
ing submodels and specifying the neural network architecture. Rather than providing a
fixed set of rules or formal proofs, our approach follows the data science tradition: we
can evaluate and experiment to identify which combination of submodels yields the best
approximation.

As a first practical demonstration, we study a simple and analytically tractable asset
pricing model. We choose this setting because it allows us to show analytically how the
full model can be approximated through a set of submodels. The controlled environment
serves to illustrate the methodology and provides a necessary first validation step.

We find that our generative modeling approach closely matches the analytical solution.
Since analytical solutions are not available for most applications, we also evaluate accu-
racy through Euler equation errors. The errors in our approach are very low and com-
parable to those obtained when a network is trained directly on data simulated from the
full model. This indicates that our method generates coherent full-model behavior from
submodel building blocks and recovers the dynamics of a richer model with more features.
In contrast, training on data from a single submodel produces sizable approximation errors
and highlights the advantage of our methodology over the common practice of extrapolat-
ing from small models to larger ones.

As a next step, we evaluate our method in a more challenging environment. We use
different variants of a non-linear real business cycle (RBC) model to assess how well our
method provides a global solution. Specifically, we work with three non-linear versions: i)
a simplified version that can be solved analytically, ii) a medium-sized version with state-
dependent investment costs that result in distinct nonlinearities, and iii) a heterogeneous
agents version with partially uninsurable income risk in line with Krusell and Smith (1998).
While the variants are increasing in their complexity, we can still rely on conventional solu-
tion methods to solve the complete model. Thus, we can evaluate how well our approach
is designed to capture nonlinearities and how applicable it is to the class of heterogeneous
agent versions, benchmarking it against the complete model. Similarly, we exemplify how
to use the Euler equation error as a measure of fit in different setups.

To solve these models with generative economic modeling, we construct for all these
models overlapping submodels and then use simulated data to train our neural network.



Our methodology provides a very good approximation in all three versions of the model.
When compared with neural networks trained directly with the complete model, the mag-
nitude of these errors is in the same range.> Similarly, the Euler equation errors are low
and have the same magnitude, highlighting the robustness and accuracy of our approach.
This holds for the aggregate dynamics in the analytical model, the heterogeneous agent
version as well as the nonlinear dynamics in the medium-sized model with piecewise non-
linear capital adjustment costs. By accelerating the solution of complicated models and
enabling the analysis of very hard-to-solve economic environments, our approach provides
a powerful tool for advancing research on nonlinear, heterogeneous, and more generally,
high-dimensional economic models.

Finally, we apply generative economic modeling to solve a complex Heterogeneous
Agent New Keynesian (HANK) model with multiple aggregate shocks and financial fric-
tions. The financial friction prevents firms from hiring as many workers as they desire and
introduces a nonlinearity in the model. Solving this class of models is computationally
challenging, as the dimensionality of the household state space increases with each addi-
tional aggregate shock.* Additionally, heterogeneous agent models with multiple aggregate
shocks face a threefold curse of dimensionality. First, expanding the state space signifi-
cantly increases the computational complexity of solving the household problem. Second,
incorporating additional shocks complicates the accurate computation of expected values.
Third, introducing more states necessitates a more involved calculation of the perceived
laws of motion to forecast the future evolution of payoff-relevant aggregate variables.

Our methodology addresses these challenges by effectively reducing the state space by
solving smaller submodels, which are then collectively used as inputs to train the neural
network. Specifically, we construct a collection of nonlinear submodels, each of which
includes the financial friction but only a subset of the aggregate shocks. We then solve
and simulate these submodels using a version of the global solution method developed by
Krusell and Smith (1998), extended to accommodate multiple shocks. Subsequently, we
merge the simulated data from the submodels and train a neural network on the com-
bined dataset to approximate the dynamics of the full model, with all shocks and frictions
simultaneously active.

3 The positive approximation errors for the complete model come from training the neural network instead
of working directly with the complete model solution.

4 Several studies have proposed different approaches and modifications to solve such models; see, for exam-
ple, Algan, Allais and Den Haan (2008), Reiter (2009), Den Haan (2010), Gornemann, Kuester and Naka-
jima (2016), Ahn et al. (2017), Boppart, Krusell and Mitman (2018), Bayer and Luetticke (2020), Auclert
et al. (2021), and Bayer, Born and Luetticke (2024). Despite these advances, solving fully specified HANK
models with multiple nonlinear frictions and shocks remains numerically intractable with conventional
solution methods.



The analysis delivers two central insights about the transmission of financial shocks
in a HANK model with financial frictions. First, the model highlights how the presence
of additional aggregate shocks alters the transmission of any single shock. For instance,
the impact of a financial shock is attenuated in a setting with more aggregate shocks.
This dampening arises from increased aggregate uncertainty, which strengthens agents’
precautionary motives. With more sources of risk, households anticipate greater volatility
and self-insure more aggressively through higher precautionary savings. As a result, when a
shock hits, they are better prepared, and the overall economic response is less pronounced.
Second, the model exhibits strong nonlinear effects in response to a financial shock. While
all sizes of negative shocks result in a downturn of the model economy, these effects become
much stronger when the financial shock is larger. Larger shocks constrain firms more in
their hiring decision, strongly reducing households’ labor income, which triggers a larger
downturn.

As initial motivation for our approach, we emphasized the potential fragility of deep
learning when applied directly to solve the economic model. Our method avoids this prob-
lem due to a key difference. In our approach, the training data for the neural network is
precalculated based on conventional solution methods and is therefore not endogenously
affected by the training of the neural network. By contrast, when deep learning is ap-
plied directly to solving economic equations, the inputs used usually depend on the model
solution generated by the neural network itself. In this case, the inputs are endogenous
rather than exogenous, as they rely on the output of the neural network. This feedback
loop makes finding a solution substantially more difficult — an issue that our generative
economic modeling approach avoids.

Literature Review Our paper belongs to the fast-growing literature that uses deep learn-
ing to solve dynamic economic models. The areas of application have been HANK mod-
els (Ferndndez-Villaverde et al., 2024; Kase, Melosi and Rottner, 2022), heterogeneous
agents (Azinovic, Gaegauf and Scheidegger, 2022; Azinovic-Yang and Zemlitka, 2025;
Fernandez-Villaverde, Hurtado and Nuno, 2023; Gorodnichenko et al., 2021; Gu et al.,
2024; Han, Yang and E, 2021; Kahou et al., 2021; Maliar and Maliar, 2022; Maliar, Maliar
and Winant, 2021), overlapping generations and life-cycle (Azinovic-Yang and Zemlitka,
2024; Druedahl and Regpke, 2025; Pascal, 2024), finance (Chen, Didisheim and Scheideg-
ger, 2023; Duarte, Duarte and Silva, 2024; Duarte and Fonseca, 2024; Valaitis and Villa,
2024), labor markets and search (Adenbaum, Babalievsky and Jungerman, 2024; Junger-
man, 2024; Payne, Rebei and Yang, 2024), monetary policy (Chen et al., 2021; Nufo,
Renner and Scheidegger, 2024), climate change (Fernandez-Villaverde, Gillingham and



Scheidegger, 2024; Friedl et al., 2023; Kiibler, Scheidegger and Surbek, 2025), and beha-
vorial macroeconomics (Ashwin, Beaudry and Ellison, 2025; Kahou et al., 2024). However,
our approach to using neural networks deviates strongly from these papers, as we are not
interested in directly solving the economic equations. More closely related to our work is
the usage of neural networks as surrogate models as in Kase, Melosi and Rottner (2022)
and Chen, Didisheim and Scheidegger (2023). Yet, these papers use the complete underly-
ing model for the training, thereby excluding the generative part. Finally, we also differ by
following a hybrid approach that exploits the advantages of conventional solution methods
and deep learning.

Our methodology allows us to speak to the large literature on HANK models (see e.g.,
McKay and Reis, 2016, McKay, Nakamura and Steinsson, 2016 Den Haan, Rendahl and
Riegler, 2018, Guerrieri and Lorenzoni, 2017, Ravn and Sterk, 2017, Kaplan, Moll and
Violante, 2018, Kaplan and Violante, 2018, Auclert, 2019, Bayer et al., 2019, Ravn and
Sterk, 2020, Gornemann, Kuester and Nakajima, 2016, Luetticke, 2021, Auclert, Rognlie
and Straub, 2024, Bayer, Born and Luetticke, 2024). We show that aggregate risk sub-
stantially increases the precautionary motive. Even though recent work in this literature
has increasingly focused on incorporating aggregate risk and non-linearities by approxi-
mating the dynamics to higher-orders (Bhandari et al., 2023, Bayer et al., 2024), adding
occasionally binding constraints (Lin and Peruffo, 2024) or focusing on uncertainty (Ilut,
Luetticke and Schneider, 2025), these methods do not attempt to solve the model globally.
Only very few papers can solve a medium-scale HANK model globally, and they do not use
conventional solution methods, except Schaab (2020). Instead, our approach provides a
solution that combines an adapted version of the widely used global solution method of
Krusell and Smith (1998) with neural networks to model nonlinearities and heterogene-
ity jointly.> Our work is also directly related to integrating financial frictions and shocks
in HANK models (see e.g., Fernandez-Villaverde, Hurtado and Nuno, 2023, Faccini et al.,
2024, Nord, Peruffo and Mendicino, 2024).

Our work also builds on the broader literature on conventional solution methods that
do not rely on deep learning. Given the vast array of contributions across different fields of
computational economics, providing a comprehensive review would be infeasible. Instead,
we refer to the influential books on numerical methods by Judd (1998), Miranda and Fack-
ler (2004) and Heer and Maussner (2024), which provide a great overview of the meth-
ods available. Our approach builds upon these traditional methods while leveraging deep
learning to enhance their capacity to handle higher levels of complexity. The combination

> For instance, Merikiill and Rottner (2025) show empirically that the distributional effects of monetary
policy are nonlinear.



of the methods makes it possible to tackle problems that were previously computationally
intractable.

2 Generative Economic Modeling

This section outlines our generative economic modeling approach, which is designed to
solve a large class of dynamic general equilibrium models.®

2.1 Underlying Complete Dynamic General Equilibrium Model

The dynamics of a dynamic general equilibrium model can be expressed as a transition
equation:

St = f<St—17 Ut7¢(8t—17 Vt>|@> (1)

where the state vector S; € R™ describes the economy in period ¢. Note that such a
representation can contain heterogeneous agents or behavioral models. The economy is
also subject to exogenous shocks that follow a Markov process, which is captured by the
vector v, € R™. There is also a vector of structural parameters © € R¢, which affects
the dynamics of the model. The function f(-) determines the mapping from the previous
period state variables S, ; and current period shocks v; to the current period state variables
S; conditional on the structural parameters. To solve the transition equation, it is needed
to find the policy function (decision function) ¢(S;_1,7;), which maps the model state
variables S, _; and v; to a set of choices ;. For notational convenience, we directly include
the policy function in the transition equation.

This mapping from the state variables to the policy function is usually unknown and
needs to be solved with numerical methods. Luckily, there already exists a large set of
solution methods - more general solution approaches, like value function iteration, policy
function iteration, or the endogenous grid point method, and very tailored solution meth-
ods, such as the Krusell-Smith approach for heterogeneous agent economies with aggregate
risk. In general, the idea is to find an equilibrium function that maps the state variables to a
set of control variables, 1, = ¢(S;_1, 14|©). These policy functions satisfy a set of equations
derived from the model.

F(¢t> =0 (2)

Once equipped with these policy functions, we can solve for the transition equation.

6 We focus on dynamic Markov economic models, where agents solve a Markov decision problem, as e.g. in
Maliar, Maliar and Winant (2021) and Ferndndez-Villaverde, Nufio and Perla (2024).
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The advantage of our approach is that we keep the conventional policy-function solution
steps unchanged, since they have been refined for years for specific problems. However,
such conventional global solution methods face the curse of dimensionality. The exponen-
tial growth of the grid points of the state space as the number of states increases limits the
complexity of the economic model that can be considered. For instance, solution methods,
which use full grid-based approaches with GG points per dimension, have exponential com-
puting costs, as shown by the number of grid points O(G™*").” Importantly, this problem
already occurs for a small number of states.

2.2 Submodels of the Complete Model

The curse of dimensionality often forces the modeler to reduce the complexity of the stud-
ied model by limiting the number of state variables and shocks. In other words, a simplified
submodel is derived from the underlying complete model.® In practice, using a submodel
instead of the most comprehensive model available is mostly the norm when working with
global solution methods.” In that regard, economists are well-trained to use submodels,
and it is likely the common approach.

We denote the variables in a submodel version with ~ and rewrite the transition equa-
tion of the submodel as:

St = f(gtfla 17tﬂ;t‘é) (3)

where the dimension of the states S, € R™ and shocks 7, € R" is smaller than in the full
model, that is (7 < m) V (o < n). Note that the set of structural parameters © € R? is then
also potentially smaller, that is d < d.1°

However, we can now specify not only one submodel, but instead several submodels
that capture different elements of the underlying model, that is S¢,S!, S¢, ..., where the
superscript indicates the submodel:

Si = f? (Si_l,ﬁf, Z](:)Z), fori =a,b,c,... 4)

Note that refinements to the solution method can lower the computational costs, e.g. adaptive sparse grids
(see Brumm and Scheidegger (2017)).

This approach is related - though conceptually distinct - to dimensional decomposition, in which the behav-
ior of a high-dimensional function is represented as a sum of lower-dimensional functions. For applications
in economics to reduce the curse of dimensionality, see Eftekhari and Scheidegger (2022) and Eftekhari
et al. (2025).

Models that are solved with perturbation methods are usually much larger than models solved with global
solution methods, however, there also exist limits on the size of the problems. In the HANK literature, the
size of the household problem is such a limiting factor.

10We impose that each submodel in itself is still a general equilibrium model.
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A B C Full

Figure 1 Illustration of the concept of submodels, where we have three submodels that cover a different
subset of states from the full model, as marked with different colours (green, red, and blue). In total, we
have three submodels (A, B, and C), capturing all possible subset combinations of the full model.

All these submodels together form a set f:

f (St—h Vt,¢t|é> = {fa (Sg—lv ﬁfﬂﬁflé") 7fb (S?—h Dfﬂzﬂéb) ’JEC (Sg—h Dtcalﬁﬂéc) R } ’
(5)
where we omitted the dependence of the policy function for conciseness.

Importantly, the numerical costs to extend the set increase linearly instead of exponen-
tially (conditional on keeping the same number of states and shocks for each submodel).
The submodels can be specified to be complete and overlapping. We define completeness
as each state S; and shock 1, is at least covered in one submodel. Therefore, at least one
submodel captures one specific part of the underlying model. This requirement ensures
that the set of submodels and the true model have the same states, shocks, and param-
eters. We define overlap as each state S; and shock v, should be at least covered in two
different submodels, so that the different subsets overlap.

The number of required submodels to achieve completeness and overlap as defined
above is determined by the binomial coefficient:

(m+n): (m +n)! ©)

m+n (m+n) (m+n—m+n)!’

where m + n and m + n denote the number of states in the full model and the submodel,
respectively. For each of the submodels, the number of grid points is now substantially
lower due to the reduced dimension, that is O(G™™).

Illustration of submodels To illustrate the notion of a submodel, consider an economic
model with a state vector S that is too complex to solve in full. Instead, we solve submod-
els, each based on a subset S. Figure 1 illustrates three submodels, each containing only
a subset of the states from the full model. However, we solve the submodels with overlap,



such that each submodel features two of the subsets of states. For instance, submodel A in-
cludes the blue and green subset of states, while others incorporate different combinations.
In total, we have three submodels (A, B, and C), capturing all possible subset combinations.

2.3 Deep Learning Approach to Reconstruct the Full Model

Each submodel is a subset of the true underlying model, that is

(2

fi (St_l,a;‘,z;;jyé) C f(Sio1,v0,9,]0) Vi = a,b,c, ... 7)

The idea of this paper is to evaluate whether a rich specified set of submodels is sufficient
to approximate the true underlying model. Although the set of submodels is complete and
overlapping, the submodels are only partial representations of the full models. For this
reason, we want to use deep learning to learn the underlying dynamics of the full model
from the set of submodels, leveraging deep learning’s generative capacity. We approximate
the transition equation, including the policy function, of the submodels using a surrogate
model in the form of a deep neural network fyy such that

fNN (St—h Vi, ¢t|@) ~ f (St—h Vt7¢t|@) . (8)

Below, we illustrate the individual steps of the analysis, and delegate the approach of
assessing whether the neural network accurately approximates the true model’s dynamics
to the next subsection.

Steps of the generative economic modeling approach Our generative economic mod-
eling approach proceeds in three steps, as illustrated graphically in Figure 2.

1. First, we solve the simplified submodels, ensuring completeness and overlap of the
submodels. The choice of solution algorithm is left to the researcher, as our approach
is compatible with any method that can solve the dynamics of the model.*!

2. Second, we simulate each submodel separately to create the data series for the differ-
ent variables. We then prepare the dataset by merging all simulations, creating a long
data series in which only a specific subset of states and shocks is active in different

1'While any solution method can be used, the methodology yields optimal performance when applied to
solution techniques that minimize approximation errors. The surrogate model’s accuracy depends on how
well the training data represents the true data generation process. In our applications later on, we employ
global solution techniques to solve the model as accurately as possible.
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1. Solve 2a. Simulate 2b. Prepare Dataset 3. Train Neural Network

(¢ Dataset D = {D'}icta B0y
constructed by stacking
{Sév V;- }1{\;0

e Sample k from D is a
pair z;, and y:
inputs z;, = [X}, /]
targets ;. — [Si,]

vy N
Loss: L(ye U) = 5 et ik — yell?

Figure 2 Flow chart of the generative economic modeling method.

periods. The dataset that holds the simulation for all submodels is:'?

m X ~a ,Ja N ab ~b 7b N X ~c ¢ N
D:{{ =1 Ve }tzl’{st_l’yt’¢t}t=1’{ =1V t}tzlwu}' ©)

3. Finally, we train the neural network using the datasets from the submodels by min-
imizing the mean squared errors between the predicted values from the neural net-
work and the observed values from the submodels:!?

fny = arg mV_[i/nL(W|D) (10)

By training the network on data from multiple submodels, it learns the distinct transmis-
sion mechanisms of individual shocks, effectively generating an economic model that inte-
grates the key features of the underlying data. At the same time, some higher-order interac-
tion terms remain unobserved during training because each submodel includes only a sub-
set of features. As a result, the surrogate approximation will contain some residual error.
However, this error decreases as the number of features per submodel increases. Addition-
ally, in many economic models the contribution of higher-order interaction terms—such as
those arising from multiple shocks—tends to diminish. Consequently, even when trained
on submodels with a limited number of features or shocks, the surrogate is expected to
achieve high accuracy for most applications. In what follows, we demonstrate how to eval-
uate whether the neural network approximates to a high degree of accuracy the complete
model’s dynamics by leveraging insights from its individual components.

12 Because our set of submodels is complete, this training data covers all states and shocks, that is S; and v,.
13 We also divide the collected dataset into a training and validation sample.'*
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2.4 Ex-post Validation: Euler Equation Errors as Criteria of Fit

To evaluate the accuracy of our generative modeling approach, we need to evaluate whether
it approximates the dynamics of the true model. Hence, we need to test whether for the
true states S;, shocks v, and parameters O it holds that

NN (See1, v, 0|O) & f (Si_1, v, 14| ©) . (11)

When showcasing our method in the following chapters, we rely mostly on models
where we can solve the complete model for illustration purposes and can benchmark the
performance of our methodology against the true data-generating process. Hence, we can
check whether equation (11) holds approximately.®

However, this possibility is, in practice, usually unavailable as the methodology is de-
signed to be applied to a model that is otherwise unsolvable, as in the case of our HANK
model with financial frictions. Even though we cannot provide a proof that a sufficiently
rich set of submodels approximates the true underlying model, we can directly employ
standard methods to check the approximation error. In particular, we can use selected
equilibrium conditions and calculate the associated Euler equation errors, as e.g. in Judd
(1998) and Aruoba, Fernandez-Villaverde and Rubio-Ramirez (2006). Hence, we can check
whether the following relation approximately holds:

F(¢NN(St—1>Vt)) ~ 0. (12)

where ¢y y(-) denotes the neural network-based approximation of the policy function. The
equilibrium conditions can be taken directly from the conventional solution step for the
complete model, which we never solve. However, we now use our mapping from the
generative neural network to assess the fit. Note that we can also evaluate expectations
over variables using methods such as Monte Carlo or Quadrature rules, that have been
used for solving the submodels.

3 Illustration of the Method with a Tractable Example

This section illustrates our methodology using a simple, analytically tractable asset pricing
model. We choose this model because it illustrates analytically how our method is able
to approximate a full model through submodels. Specifically, the higher-order interaction

15 Since training a neural network introduces errors in the approximation, besides checking the approxima-
tion (11), we also check the relative performance of our neural network trained on data from the submodels
compared to a neural network trained on the true data generated from the true full model.
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terms of the shocks can be characterized analytically, ensuring that the submodels jointly
capture all components of the complete model’s solution. We interpret success in this
environment as a necessary condition for validating our approach before we evaluate the
method using more complicated models later.

3.1 Asset Pricing Model and Decomposition into Submodels

The model is a basic asset pricing framework based on Canzoneri, Cumby and Diba (2007).
To solve the model, we need to determine the price of a nominal pure discount bond,
denoted by ¢;, which satisfies the following Euler equation:

q = BE; [eXp(—WtH - 7A0t+1)] ) (13)

where + is the coefficient of relative risk aversion, m, = log(Il;) is the log gross inflation
rate, and Ac; = log(C;) — log(C;_1) is the change in log consumption. This equation arises
from a standard consumption-savings problem in which households price nominal bonds
under uncertainty.

To close the model, we assume that log inflation and log consumption growth follow a
first-order vector autoregressive process (VAR(1)):

yr = Ayr—1 + ney, (14)

where y; = [m, Acy)' is the state vector, ¢, = [ef, ef ,er] is a vector of structural shocks,
and 7 is a 2 x 3 matrix of shock loadings. We associate each shock with an economic
interpretation: a technology (TFP) shock (a), a discount factor shock ({), and a markup
shock (). This labeling is primarily for interpretability and does not affect our results.

Analytical Solution of the Complete Model Given the log-linear structure of the model,

we can solve it analytically.'® Then the full solution for the price of the asset can be written
as:

q: = Bexp < — (@11 +yagy) m — (a2 + yass) A

+ 3 |:£7711 + 77721)i+£7712 + ’77722)i+£7713 + ’YWzs)i]) (15)
e M e

16 A detailed derivation is provided in Appendix A.

13



where a;; denotes the (i, j)-th entry of the matrix A, and 7;; denotes the (i, j)-th entry
of the impact matrix n. The terms in the square bracket of equations (15) captures the
contribution of all present shocks to the conditional variance of the pricing kernel. All
terms in the second line represent the effect that fluctuations introduced by the existence of
the aggregate shocks have on the pricing kernel, with the contributions directly connected
to the specific shocks.

Analytical Solution of the Submodels To use this example for our methodology, we
assume that we cannot solve the full model. Instead, we can only solve submodels that
have only two of the three shocks. Shutting down an individual shock i is identical to
setting 7;; = 1;2 = 0 in (14). The following equations denote the equilibrium prices without
a shock i by ¢,":

Qt\a = [ exp (—(an +ya) T — (a2 + yage) Ac, + % [(7]12 + yn22)? 4 (i3 + 77]23)2}) (16)
Qt\c = [ exp (—(an +yag1) T — (a2 + yage) Ac, + % {(7711 + 1) + (i3 + 77723)2}) (17)
g = Bexp (—(a11 +van) m — (a2 +vaz) Acy + 3 [(m1 + v121)* + (2 +vm22)*])  (18)

As each submodel lacks one shock (i.e. n;; = 1,2 = 0 for a shock 7), the variance term varies
from submodel to submodel.!”

Mapping of the Solutions The submodels together feature all elements from the impact
matrix of the full underlying model.'® Each submodel features two of the pricing terms for
aggregate risk, as can be seen in the equations for the submodels (16) - (18). Additionally,
each submodel contains the terms for the direct impact of inflation and log consumption
growth on the asset price.

The idea of our approach is that during training, the surrogate neural network learns
these pricing coefficients from the data of each submodel in the combined dataset. The
surrogate learns these submodel specific coefficients because the pooled dataset includes
zero-shock realizations that let it distinguish observations by submodel. Overlapping simu-
lations from different submodels ensures coverage of all coefficients and shock interactions
such that we are able to approximate the solution of the complete model in equation (15).

17 Note also that the VAR(1) process for m; and Ac; differs, since these series are affected by only two shocks
in the submodels, compared to three shocks in the true model.

18 This property is not a general feature of models, since it relies on the submodels collectively featuring all
terms of the full model. In our case, we have that all terms above the second order are zero, so that the
combination of submodels fully captures it.
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Figure 3 Training and validation convergence for the asset pricing model. The figure shows the loss over the
training sample (left) and validation sample (right).An epoch is completed when all the training or validation
sample points are utilized. The vertical axis is expressed in logarithmic scale.

3.2 Data Simulation and Dataset Generation

To generate our datasets, we simulate synthetic data for three submodels separately. Specif-
ically, we simulate each model for 20000 periods by drawing random realizations of the
shock vector ¢; and use the analytical solution to simulate the variables forward. Specif-
ically, we generate paths for inflation and log consumption growth using equation (14),
and compute the corresponding bond prices using equations (16) - (18), depending on the
submodel. For each submodel where shock i is inactive, we obtain simulated time series
{q,}i, 7rt\", Ac}i, e}i}, where e}" is a T' x 3 matrix of shock realizations. Since shock i is turned
off in the respective submodel, the corresponding column of e}i is zero throughout the
simulation.

After simulating all three submodels, we concatenate the resulting datasets into a single,
unified dataset.' This combined dataset includes observations on m;, Ac;, and ¢, from each

of the submodels, along with the associated bond prices ;.

3.3 Neural Network Training

We then use the combined dataset from the simulations to train a neural network as a
surrogate model. By including shock realizations equal to zero in the training data, we
allow the neural network to learn from data in which a particular shock is absent with

19 When combining the datasets, we shuffle the data such as to reduce autocorrelation of the input data, as
well as to mix the input data from different submodels. Moreover, we cut the total number of input data
to 20000, such that only a third of the available data is used for training and evaluation.
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Figure 4 Approximation error of the asset price ¢; (LHS) and Euler equation error (RHS) in the asset pricing
model. For the approximation error, we compare the simulated value to the true value for 16000 periods
for our generative modeling approach (blue). It is compared to using the complete model (orange) and
incomplete model (green), for which we train a neural network using data generated from the full analytical
solution and from a single submodel, respectively. The Euler equation error uses the predictions of generative
economic modeling and calculates how well the model fulfills the model-implied Euler equation. We compare
the Euler equation error for our generative method (blue) to the Euler equation error generated by the
complete model (orange).

certainty. The neural network, as a flexible nonlinear function approximator, is thus trained
to recognize that the policy function changes systematically in the absence of shocks.

The neural network architecture features five hidden layers with 128 neurons each,
linear activation functions in the input and output layers, and HardSigmoid activations
in all hidden layers. We train the network using the AdamW optimizer to minimize the
mean squared error between predicted and true values. The learning rate follows a cosine
annealing schedule, starting at 10~3 and decaying to 10~7 over the course of training.

The neural network is trained for 2000 epochs with a batch size of 200. For the training
of the neural network, we divide our dataset into a training sample, which we use to
train the neural network directly. We compare the loss with a validation sample to avoid
overfitting the neural network. Figure 3 shows the mean squared residual error for the
training and validation samples, which shows that the loss converges to 10~7 after 2000
epochs. While the validation loss is slightly larger, there is no overfitting, as the validation
loss is not increasing.

3.4 Results

We now evaluate our generative approach using the approximation error, the Euler equa-
tion error, and model moments.
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Approximation Error The numerical accuracy of our method is shown in Figure 4. Specif-
ically, the left panel displays the histogram of the approximation error for the asset price.
We compute the error as the difference between the neural network’s predicted value and
the true analytical value, using a sample of 16000 periods. The average error is close to
zero, and the distribution is tightly concentrated around zero, showing a very good fit in
this laboratory setting. The neural network extrapolates based on its fit to the training
data from the different submodels. In doing so, it draws on the pricing coefficients it has
learned separately from each submodel. Since each submodel isolates different combina-
tions of shocks, the neural network learns all three aggregate risk pricing terms through
exposure to their respective datasets. As a result, its extrapolations to the full model setting
yield highly accurate predictions.

We also compare our approach to using the complete model, for which we train a neu-
ral network using data generated from the full analytical solution with all three aggre-
gate shocks present. The error is very similar to the generative approach, confirming our
method. By contrast, restricting training to a single submodel produces much higher er-
rors.? The distribution for the incomplete model is more spread, as the model misses key
features.

Euler Equation Error The right panel of Figure 4 reports our external validation measure
— the Euler equation error. As mentioned earlier, the advantage of this measure is that
it can be computed even without directly solving the complete model. The generative
approach produces a very low Euler equation error, centered below 10~3. For comparison,
we also report the Euler equation error for the complete model, which is slightly smaller.
However, in both cases the values are small and the difference is negligible. Thus, the Euler
equation provides a direct validation of our approach.

We do not report the Euler equation error for the incomplete model, as this is only a
measure of numerical accuracy and not a criterion for model selection. While a low Euler
equation error indicates that the model is solved with high precision, it does not provide
guidance on the appropriateness of the model’s design. For this purpose, the model’s in-
tended use or its fit with the data should be the decisive consideration.

Moments Another important criterion is how well our approach recovers the underlying
model moments. A particularly useful criterion here is the standard deviation of the asset

20 We train another neural network that now only uses the simulations from a submodel that features only a
TFP shock. Note that we include in the autoregressive process of equation (14), which governs inflation
and consumption growth, all three shocks for the approximation and Euler equation. When using only a
submodel also for equation (14), the errors would be substantially higher, resulting in a different order of
magnitude for the error.
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price, where our generative approach predicts a value of 0.1416, which is very close to the
true value of 0.1423. In contrast to this, a submodel with only one shock, which is used
to simulate the model and calculate the asset price, underestimates the standard deviation
substantially. For instance, the standard deviation with only the TFP shocks would be only
0.0850. The reason is that two sources of risk are omitted. If we instead recalibrate the
model to match a standard deviation of 0.1423 for the asset price, the contribution of the
two shocks becomes highly overstated. Thus, it is critical to work with the model that best
fits the purpose or the data, reiterating the need to solve the complete model.

4 Evaluation with an RBC model with Nonlinearities and

Heterogeneous Agents

In this section, we evaluate our generative economic modeling approach using variants of
an RBC model that we solve globally. We use different variants of the RBC model to as-
sess how well our method handles nonlinear model solutions, with a particular focus on i)
strong state dependencies and ii) the presence of heterogeneous agents. Crucially, the com-
plete nonlinear models can still be solved using traditional solution techniques, allowing
us to benchmark our approach against an existing global model solution technique.

4.1 Model Environment: Variants of the Real Business Cycle Model

We choose three different variants of the quantitative real business cycle (RBC) describd
below to evaluate our method: i) a simplified but nonlinear version that can be solved
analytically, ii) a medium-sized version with state-dependent investment costs that result
in distinct nonlinearities, and iii) a heterogeneous agents version with partially uninsurable
income risk in line with Krusell and Smith (1998). We work with the global solution for all
variants.

RBC Model We use an extended stochastic RBC model composed of a firm sector, a house-
hold sector, and a government sector to test the predictive power of our method. The firm
sector comprises of (i) final goods producers who bundle the intermediate goods to pro-
duce the final good Y}, (ii) intermediate goods producers who hire labor services N, for the
wage w;y, rent capital K, at price r; from perfectly competitive markets, adjust their capital
utilization u,, but face monopolistic competition in the goods market as they produce dif-
ferentiated goods, and (iii) producers of capital goods who invest [, subject to adjustment
costs to produce capital that they sell at price ¢;.
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Households earn income from supplying labor N, and capital K;, and earn profits II;
from owning the firm sector. Households spend their income for consumption C; and
capital K;,,. Finally, the government levies distortionary labor- and capital-income taxes
with tax rates 7" and 7%, besides a value-added tax on consumption 7. Raising taxes is
purely distortionary since the government returns the tax revenues to the household via
lump-sum transfers 7;. Importantly, the model features up to five shocks. The markup s,
TFP A,, labor-augmenting productivity Z;, discount factor shock ¢;, and depreciation rate
do; generate stochastic fluctuations.

We show the system of equations below, while the full derivation of the model equations
is delegated to Appendix B. The production sector is described by:

}/; = At (uth)a (ZtNt)lia, (19)
aYy
_ &t 2
7t + G0 (u) K, (20)
1—-aY;
Wy = —, (21)
' e IV
a—1
o u Ky a Y,
01+ 0(uy — 1) = —AK = ——, (22)
@[ (o ) ot o (ZtNt) My Uy
k=171
1—¢ i — 4 (23)
qr = t K, ot )
_ ¢ (1 :
Kt+1 = (1 — 5(Ut)) Kt + It —— | —=-9 Kt~ (24)
K Kt
where ¢, = ¢. The equations characterizing the representative household are:
(1 +79C + gk = (@ + (1= 75)r) ke + (1= 75w Ny + T, + 114, (25)
QtUC(Cta Nt) = PE, % (Qt+1 + (1 - TK)Tt+1) UC<Ct+17 Nt+1>] (26)
t
uc(Cy, N,
— UN(Ot7 Nt) = (]_ — TL)wthtM, (27)

1+ 7¢

where u¢ and uy denote the deviation of household utility function with respect to C; and
N;. The government sector and the market clearing condition are given as:

T, = 7°C; + 757 K, + 75w, Ny, (28)
Y,=C,+ 1 (29)
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The different shock processes?! are given as:

2

InA; = (1—pa) (lnA — %) +palnA,y +€t, with ' ~ N(0,0%), (30)

2
nZ, = (1-pyz) (111Z — 072) +pzInZ,_ +ef, with ¢ ~ N(0,0%), (31)
0.2
]n,ut = (lnu—|— 7”) +6¢, with 6? ~ N(0,0’Z), (32)
ot = 0p + €, with € ~ N(0,02), (33)
0.2
In¢ =—(1— pc)?f +pcnGy+¢, with ¢ ~ N(0,02). (34)

We vary the activated shocks in the different model variants. Next, we illustrate the model
variants and their specific features.

Variant 1: Analytical solution To begin with, we illustrate our methodology using a rep-
resentative agent version of the model, which admits an analytical solution following Brock
and Mirman (1972). The following proposition summarizes the assumptions necessary to
obtain an analytical solution to the model.

Proposition 1. If depreciation is deterministic and full, §(u;) = 1, capacity utilization is fixed
at uy = 1, there are no capital adjustment costs ¢ = 0, the discount factor shock is inactive
0} = 0, and per period felicity is of King, Plosser and Rebelo (1988) (KPR)-form given by

14y

u(Cy, Ny) =InCy — w%. Then the policy functions of the representative household are
pl—7H(1—a) |7
Ny = , (35)
t [utw(l +79) (1 — af)
C, - (1 - “—5> Y (36)
7
K = 20, (37)

with Y; = A, K (Z;Ny)'=*. Given the policy functions of the household, we can determine the
prices in the economy. The transfers to the households are then determined by the government

budget constraint.

Proof. See Appendix B.1. O

21 Note the different formulation of the markup shock. The formulation with a positive adjustment for the
variance ensures that By [u; '] = p~ 1.
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Proposition 1 presents the solution for the representative agent economy. Fluctuations in
the markup y; drive changes in labor supply V,, while shocks to productivity (A,, Z;) affect
output Y;. Consumption C; and capital investment K, are linear functions of output. This
version serves as a simple starting point to illustrate the fit of our method to standard RBC

environments.

Variant 2: State-Dependent Adjustment Costs To highlight the importance of working
with a global solution, we solve a model that includes an additional non-linear element.
We assume that the adjustment costs are state-dependent instead of being constant:

¢ fK,>K

b1 = _ (38)
¢ ifK, <K

where ¢ > ¢ > 0.*2 The non-linear adjustment costs directly affect the price of capital and
the law of motion of capital.

Variant 3: Heterogeneous Households Next, we introduce household heterogeneity in
capital holdings k;;, in their profit income I1;;, and in their idiosyncratic income component
h;;. Households optimize their utility function subject to their individual budget constraint

(1+ 7% + gz = (Qt + (1 — TK)Tt) ki + (1 — 75 wihgng + T, + . (39)

Households face a borrowing constraint, such that they are prohibited from holding nega-
tive amounts of assets. Individual productivity h;; evolves according to

2
log hy = —(1 — ph)% + pploghu_y + € with € ~ N(0,02). (40)

with €, as a normally distributed shock with variance ¢ and mean zero.
The solution of the household problem can be characterized by the Euler equation on
capital
Ct+l

QtuC(Cita nit) = B, T (Qt+1 + (1 - TK)Tt+1) UC<Cit+17 nit+1) ) (41)
t

(42)

22 Note that capital good producers take the adjustment costs as given, as they depend on aggregate capital.
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Calibrations We calibrate the different model version to conventional values, which are
summarized in Appendix B.

Calculation of the Euler Equation Error For all models, we compute the Euler Equation
Error to assess the accuracy of the solution. We compute the relative Euler equation error
along for a simulation of the economy going forward for 7" periods as follows:

T
1 2 :2 : (u) " (BE[ Ry 1v (Citg1)])
N £« ( Ci (43)
t=1 =1
where R, = th—tht““l_q:ﬁl)”“, and u' and (u')~! denote marginal utility and the inverse

of marginal utility, respectively. For the economies with heterogeneous agents, we average
the Euler equation error across the number of grid points N, we use to discretize the
household distribution. For the representative agent variants 1 and 2, we set N = 1.

4.2 Generative Economic Modeling

We are now using our generative economic modeling approach to solve the different vari-
ants of the real business cycle model, illustrated above.

4.2.1 Generative Economic Modeling with an Analytical Solution

We decompose the initial model into three submodels with varying shock combinations:
(i) TFP and labor-augmenting productivity shocks, (ii) TFP and markup shocks, (iii) labor-
augmenting productivity and markup shocks. We use the analytical solution, adapted for
the varying shock combinations, to simulate each economy for 10000 periods. We combine
the simulations in a single dataset, where we set the shocks to zero if they are not active in
the submodel. The neural network is then trained for 1000 epochs with a batch size of 100
on the combined dataset. The neural network converges to a very training loss, with no
evidence of overfitting. The loss for the training and validation samples is shown, together
with a detailed description of the neural network architecture, in Appendix B.

Results Figure 5 illustrates the performance of our methodology. The left panel presents
the approximation error between the predicted value and the analytical values of capital,
K;. The errors are very small and centered around zero. When compared to the com-
plete model, for which a neural network is trained on data generated from the analytical
solution, the magnitude of the error is very similar. In contrast, the approximation error
increases substantially when using an incomplete model. We use here the submodel that
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Figure 5 Approximation error of the capital stock K; (LHS) and Euler equation error (RHS) in the analytical
RBC model. For the approximation error, we compare the simulated value to the true value for 10000
periods for our generative modeling approach (blue). It is compared to using the complete model (orange)
and incomplete model (green), for which we train a neural network using data generated from the full
analytical solution and from a single submodel, respectively. The Euler equation error uses the predictions of
generative economic modeling and calculates how well the model fulfills the model-implied Euler equation.
We compare the Euler equation error for our generative method (blue) to the Euler equation error generated
by the complete model (orange).

features only Markup shocks. Figure C.1 (in the Appendix) illustrates the prediction errors
for consumption and investment, which have similar patterns to those observed for capital.

The right panel of Figure 5 shows the Euler equation error. We obtain average Euler
equation errors of 0.00009 and 0.00011 for the complete model and using generative
economic modeling, respectively. Consequently, we demonstrate that our method achieves
a level of precision comparable to the complete model trained on the true data-generating
process, mirroring the findings for the analytical asset pricing model. The last important
criterion is how well our approach approximates the moments of the true data generating
process. For instance, the standard deviation of capital is 0.0413 in both the generative
and complete model, while an incomplete model version would result in a substantially
lower value. For instance, a version without the TFP shock generates only about half the
standard deviation for capital.

4.2.2 Generative Economic Modeling with a Nonlinear Model

In this section, we illustrate our methodology using a medium-sized version of our RBC
model. The model features a strong non-linearity in the adjstment costs. We abstract from
shocks to labor-augmenting productivity Z; and to the markup s, hence shocks to TFP A,
are the only drivers of supply-side fluctuations, but we complement them through shocks
to the discount factor (;,; and the depreciation rate dp;. We assume that households remain

ex-ante and ex-post identical, such that we can represent the household side with a repre-
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sentative agent. Moreover, households have a common utility function that is separable in

consumption and labor:
clo—1 N
—w
l1—o 1+~

U(Ct,Nt) = (44)

The optimal household behavior can be described by the Euler equation and the optimal
labor supply condition:

C7 = BE, | (o + (1 = )r0)Cr |

Contrary to the former section, we allow for capacity utilization choice and allow for
capital adjustment costs with a nonlinear specification as illustrated in equations (24) and
(38).

Generative Economic Modeling We decompose the underlying complete model into
three submodels with varying shock combinations: (i) TFP and discount factor shocks, (ii)
TFP and depreciation shocks, and (iii) discount factor and depreciation shocks. The sub-
models are solved with global methods, specifically policy function iteration, to account for
all nonlinear features.?®> Using our global solution, we simulate time series data for three
submodels for 10000 periods. We combine the simulations in a single dataset, where we
set the shocks to zero if they are not active in the submodel. Specifying the neural network
similarly to before, it is then trained for 1000 epochs with a batch size of 100. The loss for
the training and validation samples converges to low values. The details on the training
and architecture are in Appendix B.

Results Figure 6 reports the performance of our algorithm for the medium-sized non-
linear DSGE model, using capital as an example. Comparing the generative approach’s
predictions with the complete model demonstrates that our methodology provides a strong
fit, even for a medium-sized DSGE model with nonlinearities. The predicted values closely
align with the true values, addressing the issue of under- and overprediction observed in
the analytical version from the previous section. In contrast, the approximation error in-
creases when using an incomplete model. We use here the submodel that features only

23 Within the class of policy function iteration methods, we use time iteration with linear interpolation as
in Richter, Throckmorton and Walker (2014) and Bianchi, Melosi and Rottner (2021). The parameter
choices are conventional and chosen to ensure strong nonlinearities in the shock propagation, as shown in
Appendix B.2.
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Figure 6 Approximation error of the capital stock K; (LHS) and Euler equation error (RHS) in the nonlinear
RBC model. For the approximation error, we compare the simulated value to the true value for 10000
periods for our generative modeling approach (blue). It is compared to using the complete model (orange)
and incomplete model (green), for which we train a neural network using data generated from the full
analytical solution and from a single submodel, respectively. The Euler equation error uses the predictions of
generative economic modeling and calculates how well the model fulfills the model-implied Euler equation.
We compare the Euler equation error for our generative method (blue) to the Euler equation error generated
by the complete model (orange).

depreciation shocks. The error is particularly larger on the left-hand side of the distribu-
tion, in line with our state-dependent adjustment cost function for investment. Figure C.3
(in the Appendix) shows the prediction errors for other key variables.

The right panel of Figure 5 shows the Euler equation error. On average, we obtain
Euler equation errors of 0.0032 and 0.0035 for the complete model and using generative
economic modeling, respectively. The histograms illustrate that our method achieves a
level of precision comparable to the complete model trained on the true data-generating
process. As before, we observe substantial differences in the moments if we were to use
only a submodel. Overall, our generative approach effectively captures the dynamics of the
underlying model, even in the case of pronounced nonlinearities.

4.2.3 Generative Economic Modeling with Heterogeneous Agents

This section applies our methodology to a model with heterogeneous households. In con-
trast to earlier sections, we now incorporate both ex-ante and ex-post heterogeneity, fol-
lowing the framework of Krusell and Smith (1998). As a result, the joint distribution of
wealth and income becomes a state variable when solving the model.

To simplify the solution of the model, we abstract from endogenous capacity utilization
(uy = 1) and set capital adjustment costs to zero (¢; = « = 0). Households maximize a
standard CRRA utility function:
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subject to the budget constraint in equation (39). Since labor supply entails no disutility,
households supply one unit of labor inelastically. We shut down government activity and

keep three aggregate shocks: productivity (A;), discount factor ((;), and depreciation (¢;).

Generative Economic Modeling We decompose the underlying complete model into
three submodels with varying shock combinations: (i) TFP and discount factor shocks,
(ii) TFP and depreciation shocks, and (iii) discount factor and depreciation shocks. Finally
we also solve the model version with all three shocks active. A detailed description of the
solution algorithm for the heterogeneous agent model with multiple aggregate shocks is
provided in Appendix B.3. Here, we briefly summarize the approach. We solve the house-
hold problem using the endogenous grid point method of Carroll (2006), and simulate the
economy using the non-stochastic simulation method from Young (2010). Since the model
includes aggregate shocks, households require a perceived aggregate law of motion (ALM)
for aggregate capital. Following Krusell and Smith (1998), we assume a state-dependent
log-linear ALM and update it iteratively until convergence, while ensuring that the gap
between the true and perceived laws is minimal, in line with the concerns raised by Den
Haan (2010). We extend the original method to allow for a nonlinear law of motion with
multiple aggregate shocks. We ensure that the gap between the true and perceived laws
is minimal. Figure B.4 (in the appendix) shows that the model-generated capital series
closely match the ALM, with a maximum deviation of less than 0.01. We solve the model
using four idiosyncratic income states and four aggregate states per shock, which we ap-
proximate as four-state Markov chains using the method of Tauchen (1986). Unlike Krusell
and Smith (1997) and Krusell and Smith (1998), we abstract from any dependence of id-
iosyncratic income risk on aggregate TFP.2* We use an exponentially space asset grid with
100 grid points and 20 grid points for aggregate capital. The full model therefore spans
4% x 100 x 20 = 512,000 grid points.

Using our global solution, we simulate time series data for three submodels over 10000
periods. We combine the simulations into a single dataset, where we set the shocks to zero
if they are not active in the submodel. Specifying the neural network similarly to before,
it is then trained for 1000 epochs with a batch size of 100. The loss for the training and

24 Although we can allow for a correlation between idiosyncratic and aggregate risk, with more than two
aggregate states there exist various possibilities to allow for cyclical variation in idiosyncratic income risk.
We leave the exploration of the impact of cyclical idiosyncratic income risk on the performance of our
method for future research.
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Figure 7 Approximation error of the capital stock K; (LHS) and Euler equation error (RHS) in the heteroge-
neous agent RBC model. For the approximation error, we compare the simulated value to the true value for
10000 periods for our generative modeling approach (blue). It is compared to using the complete model (or-
ange) and incomplete model (green), for which we train a neural network using data generated from the full
analytical solution and from a single submodel, respectively. The Euler equation error uses the predictions of
generative economic modeling and calculates how well the model fulfills the model-implied Euler equation.
We compare the Euler equation error for our generative method (blue) to the Euler equation error generated
by the complete model (orange).

validation samples converges to low values. The details on the training and architecture
are in Appendix B.

Results Figure 7 evaluates the performance of our algorithm for the heterogeneous agent
model of capital, where the approximation error of capital, K;, and the Euler equation
error are shown. In the left panel, we compare the predictions of the generative approach
with those of the complete model. The comparison demonstrates that our methodology
provides a strong fit, even in the presence of household heterogeneity. In contrast, the
approximation error increases when using an incomplete model. We use here the submodel
that features only TFP- and discount-factor-shocks. Figure C.4 (in the Appendix) shows the
prediction errors for other aggregate variables.

The right panel of Figure 7 shows the Euler equation error. The histograms illustrate that
our method achieves basically the same level of precision as the complete model trained
on the true data-generating process. On average, we achieve Euler equation errors of
0.00806 and 0.00807 for the complete model and using generative economic modeling,
respectively. Finally, we can compare moments simulated from the solution obtained from
the policy functions. As before, our methodology replicates moments close to the true data
generation process, while we observe substantial differences in the moments if we only
use a submodel. Overall, our generative approach effectively captures the dynamics of the
underlying model.

To calculate the Euler Equation Error of the model, we also applied our methodology
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Figure 8 Approximation error of the policy functions of the heterogeneous agent economy. The plots indicate
the prediction error for the consumption policy function at the borrowing constraint over four income states
in descending order. We compare here the simulated value to the true value for 10000 periods for our
generative modeling approach (blue). It is compared to using the complete model (orange) and incomplete
model (green), for which we train a neural network using data generated from the full analytical solution
and from a single submodel, respectively.

to predict the policy functions of households at each individual point of the discretized
individual state space. Figure 8 illustrates the fit of the method when predicting the policy
functions for households at the borrowing constraint. As the figure shows, the fit is excel-
lent on the household level, as well. Additional results, corroborating the previous findings,
are available in Appendix C. Finally, our method captures the moments of the model again
very well, satisfying another key objective. This result speaks to the heterogeneous agent
literature, as it substantially facilitates the global solution of heterogeneous agent models.

5 HANK with an Occasionally Binding Financial Friction

In this section, we use our method of generative economic modeling to globally solve a
medium-scale HANK model with an occasionally binding financial friction. The financial
frictions occasionally prevent firms from hiring as many workers as they desire and intro-
duce a nonlinearity that requires a global solution to be fully taken into account. How-
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ever, solving such a high-dimensional model directly is computationally very demanding,
as the dimensionality of the state space increases with each additional state variable and
aggregate shock. To address this challenge, we rely on our generative economic model-
ing approach. Importantly, the model’s complexity precludes us from directly solving the
complete version. Instead, we evaluate the accuracy of our approach using our established
evaluation criteria - the Euler equation error.

5.1 Description of the Model

The model is a HANK model that includes both idiosyncratic and aggregate risk. House-
holds insure against both types of risks by saving in liquid assets subject to a borrowing
limit. Intermediate goods are produced using labor under monopolistic competition, where
firms face Rotemberg price adjustment costs. The firms also face an occasionally binding
cash-in-advance constraint limiting production in times of financial distress. A final goods
bundler bundles intermediate goods into a final good. The government raises taxes to issue
bonds and for government consumption, while the central bank sets the nominal interest
rate as a function of price inflation. The model features shocks to the discount factor,
shocks to aggregate productivity, monetary policy shocks, as well as shocks to the ability of
firms to borrow through the financial sector.

Households There exists a continuum ¢ € [0, 1] of households which choose to obtain
utility from consumption ¢;; and leisure, and save in liquid assets b;;,; such as to insure
against idiosyncratic income fluctuations in labor productivity h;. Labor productivity fol-
lows an AR(1) process in logs as in equation (40). Households maximize the following
utility:

Eq Z BtCtu(Cita ”it), (45)

t=0
where n; denotes their labor supply and (; denotes the shock to the discount factor. We
assume that the discount factor shock follows an AR(1) process as in equation (34). We

assume that household felicity is of Greenwood, Hercowitz and Huffman (1988) (GHH)
form together with a CRRA specification:

; (46)
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where w is a scalar for multiplying the disutility of supplying labor. Households maximize
utility subject to the budget and borrowing constraint

Cit + bitr1 = (1 — m)winirhiy + Ribiy + (1 — 71)dst, (47)
bit1 > B (48)

where b;;,, denotes savings of the household, 7; the income tax, R; = 1+r; the real interest
rate, and profits d;; from owning the firm sector. We distribute profits proportional to the
idiosyncratic productivity h;. B denotes the exogenous borrowing limit of households.

Firms A final goods producer bundles a continuum of differentiated varieties j € [0, 1]
into a final good according to a Dixit-Stiglitz aggregator

1 g1 %
Y= (/ yjtn d]) ) (49)
0

with elasticity of substitution 7. This yields an optimal demand for each variety j of

DPjt -

where P, = fo pjt Cdj) = denotes the price level. Each differentiated variety is produced
by an intermediate goods producer with index j using labor as input. Production follows
the linear production function

Yji = ANy, (51)

where A; denotes aggregate productivity that follows an AR(1) process in logs. Interme-
diate goods producers are subject to quadratic price adjustment costs in logarithmic price
changes. Hence, for price-setting, the firm maximizes

¢ Pijt Pjt - ?
EOZM{( v () ok (1o ) } (52)

with a time-constant discount factor.The producer’s first-order condition gives rise to a New
Keynesian Phillips curve in goods price inflation

1} tk (MCt _ ”T_1> , (53)

Y,
log(wt) = BE, |:10g(77t+1) ;;r

t
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P

adjustment then creates real costs ;-Y; log(II;)*.

where II, is the gross inflation rate II;, = , and M ( is the real marginal costs. The price
Finally, intermediate goods producers are subject to a financing constraint when paying
their labor bill. Firms need to borrow their wage bill from a perfectly competitive financial
intermediary at a zero intratemporal interest rate; however, due to agency costs are not
able to do so up to the full level of their revenue. Hence firms face the following borrowing

constraint:
wNjy < MYjes (54)

where )\, denotes the fraction of output that firms are allowed to borrow. We assume ), to
follow an AR(1) process in logs:

2

In X = —(1— pA)% + o Inhg +€ with € ~ N(0,02). (55)

This implies that if \; < MC,, the household is constrained in its labor bill and firms can
only demand labor up to the wage rate w;, = \;A;. Hence, if firms are financially constraint,
they cannot produce up to their capacity, because they are limited in the wages they can
pay. This introduces a nonlinearity in the economy, which makes the solution of the model
numerically more demanding.

Government The government operates a monetary and a fiscal authority. The monetary
authority controls the nominal interest rate on liquid assets, while the fiscal authority issues
government bonds to finance deficits and adjusts expenditures to stabilize debt in the long
run and output in the short run.
We assume that monetary policy sets the nominal interest rate 7, on bonds following a
Taylor-type rule:
(14 d41) = 1197 exp(ee), (56)

where ¢, governs the extent to which the central bank attempts to stabilize inflation. ¢, is
an exogenous monetary policy shock that follows an AR(1) process in logs:

2

Ing = —(1— pL)% +pdni g+ with ¢~ N(0,02) (57)

The real interest rate is then determined using a Fisher relation R, =1+ r; = If{—t“
Moreover, we assume that the government issues bonds according to the rule

Bt+1 B RtBt PB E —Ir 7_; T
=) (1) (7)) 8)
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using tax revenues, 7; = 7Y}, to finance government consumption, (G;, and interest on
outstanding debt. The coefficients B, II, and 7 are normalization constants. pp captures
whether and how fast the government seeks to repay its outstanding obligations, B, R,.
For pp < 1, the government actively stabilizes real government debt, and for pp = 1,
the government rolls over all outstanding debt, including interest. The coefficients ~,
band ~+ capture the cyclicality of debt issuance: for 7, = 77+ = 0, new debt does not
actively react to tax revenues and inflation, but only to the value of outstanding debt; for
~v= > 0 > 77, debt is countercyclical; for +, < 0 < 77, debt is procyclical. We assume that
government expenditure G; adjusts such that the government budget constraint is satisfied
Gi+ RiB; = Biy1 + T;

Market Clearing Market clearing requires that the labor market, the bond market, as well
as the goods market, clear. GHH preferences imply that households supply labor according
to n; = ((llﬂ)% = N, where the last equality follows from fol hidi = 1. Hence, labor
market clearing is achieved if

(%) " if unconstrained
N, = { (59)
(@) " if constrained
Bonds market clearing is achieved if
1
By = / bit41d, (60)
0
and goods market clearing is achieved if
(1- % (InIL,)%)Y; = C; + Gy, (61)

where the left-hand side indicates production adjusted for price-adjustment costs.

Computational Challenges The problem faces three computational challenges. First, to
solve the model, we need to employ the algorithm of Krusell and Smith (1997) to forecast

Y,
I1; using a perceived law-of-motion. This requires solving and simulating the model mul-

the forward-looking part [E; [log(wtﬂ) Yt“] in the Philips curve, as well as today’s inflation
tiple times to update the law of motion until convergence. This issue is identical to the

computation issue illustrated in section 3.2.3. Second, we need to calculate the market-
clearing inflation rate in the simulation step to update the prediction of the nowcast of
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inflation, which is necessary for the solution of the household problem. Hence, after solv-
ing the household problem globally, we need to introduce a root-finding step. Concretely,
we guess an inflation rate [1, that then determines the nominal interest rate it41, relevant
for the savings choice of the households. Given the aggregate states (B, Ay, Ay, (i, 1), We
impose labor market clearing by using equation (59) and then update the guess for infla-
tion I1, until bond market clearing is achieved. This additional step requires us to solve the
household problem (although only for one backward iteration) multiple times. This adds
additional computational time. Third, adding the cash-in-advance constraint implies that
the economy features nonlinear dynamics if intermediate good firms are financially con-
strained. This requires additional runtime to solve for accurate perceived laws of motion.

Calibration We calibrate the submodels to have values of Bayer et al. (2019) with ex-
ception to the parameters guiding the bond rule. As we solve the model globally, the rule
parameters have important implications for the dynamics and the stability of the economy.
We set the parameters such as to ensure nondivergent paths of government debt. All pa-
rameter values, as well as plots illustrating the goodness of fit of our solution can be found
in Appendix D.

5.2 Generative Economic Modeling Solution

The global solution of this model with conventional methods remains numerically in-
tractable. Consequently, we solve the model using our methodology of generative eco-
nomic modeling. For that, we generate time series data for three satellite models, each
subject to two out of the four possible shocks. We solve and simulate satellite models with
(i) financial, and TFP shocks, (ii) financial and discount factor shocks, and (iii) financial
and monetary shocks. We also solve a model version without financial shocks. For the
approximation of the true solution, we solve three satellite models, each including one of
the three non-financial shocks. Hence we solve and simulate models with (i) TFP shocks,
(ii) discount factor shocks, and (iii) monetary shocks. We use this solution of the model
to understand the effect of introducing financial shocks into a HANK model. We train
two neural networks, each on the combined datasets of our satellite models. The neural
networks consist of five hidden layers, each with 128 neurons, using the CELU activation
function. The optimizer employed is AdamW, and the training minimizes the mean squared
error between the predicted and true values. The learning rate follows a cosine annealing
schedule, starting at 10~ and decaying to 10~'°.

The left panel of Figure 9 reports the mean squared error during the training. The loss
for the training sample is around 1e-5. The validation loss indicates that the neural network
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Figure 9 Training convergence and histogram of Euler equation error for the HANK model with an occasion-
ally binding constraint. The left panel shows the loss over the training and validation samples. An epoch
is completed when all the training or validation sample points are utilized. The vertical axis is expressed in
logarithmic scale. The right panel shows the histogram of the Euler equation error, where we calculate how
well the model fulfills the model-implied Euler equation.

does not overfit. The right panel shows the histogram of the Euler equation error. While
the error is slightly larger than for the Krusell-Smith model, this is natural as the model
is considerably more complex. At the same time, the shape of the histogram is also very
similar to before and well behaved, without any large outliers. Taken together, we consider

the Euler equation error in a very reasonable range and find this outcome very reassuring.

5.3 Results: Financial Friction Shock and Aggregate Risk

Having solved the HANK model with an occasionally binding financial friction, we now

investigate the transmission of shocks and the implications of aggregate risk.

5.3.1 Impact of a Financial Friction Shock

First, we are interested in the transmission of financial shocks in our model. To analyze
the impact of a financial friction shock on the economy, we investigate the generalized
impulse responses of the model to financial shocks of varying sizes. Concretely, we illustrate
response of the economy to a shock in )\; of —5% and —7.5% relative to its mean. Figure
(10) illustrates the generalized impulse response function of the solved model to these
shocks.

A drop in )\, the variable determining the space of the financial sector for intratemporal
lending induces a recession for both shock sizes. As result of the drop, firms are constraint
and hire less labor N;, which reduces production Y;. As result of this negative supply shock,
consumption C; drops, while inflation II; increases. The central bank increases the nominal
interest rate /; going forward in response to the hike in inflation, thereby increasing the real
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Figure 10 Generalized impulse response functions for a heterogeneous agent New Keynesian economy with a
financial friction, solved with generative economic modeling. Each panel reports percentage deviations from
the stochastic steady state. We compute the responses by initializing the economy at its stochastic steady
state and applying a one-time innovation to the financial wedge );, which follows an AR(1) process. The
same policy functions are used in both experiments, once with a 5% and once with a 7.5 % decline in ;. One
period corresponds to one year in the baseline calibration.

interest rate R;. Bond supply B; increases by the government, triggering countercyclical
government expenditure.

Besides having these qualitative responses in common, the economy features nonlinear-
ity in response to different sizes of shocks. The 7.5% decrease in financial space \; triggers
a substantially larger recession than the 5% decrease in lambda. This manifests itself in a
larger reduction in labor N;, a larger decrease in output Y;, and a larger decrease in con-
sumption C;. As the shock to the supply side is more severe, inflation II; increases more,
triggering a larger increase in the nominal interest rate /,. The shock is so contractionary
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that the marginal costs for production does even increases in response to the shock before
dropping, indicating that in the first period the costs of production increase due to the
financial friction.

To summarize, shocks to \; that serves as a financial shock here triggers nonlinear dy-
namics in response to different shock sizes. Such dynamics can be especially important
when trying to understand financial crisis. Generative economic modeling serves as a
useful tool to solve models with nonlinear dynamics or heterogeneity, while keeping it
numerically tractable.

5.3.2 Implications of Increased Aggregate Risk

Second, we are interested in the interaction of different sources of risk with each other.
For that, we compare the dynamics of the economy with four shocks with an economy
that only features the financial shock and a TFP shock. Through this analysis, we aim
to understand how the presence of more shocks in the model shapes the response of the
model. Figure (11) illustrates impulse responses of the economy with four shocks to a TFP
shock compared to the impulse response of the satellite economy with only the TFP shock
and the lambda shock.

The comparison between the two impulse responses shows how incorporating more
shocks in a model alters the dynamics of the model. For all variables illustrated, the re-
sponses of the variables after the financial shock is attenuated in the model with all four
shocks compared to only featuring a TFP shock. Hence, for the model environment we
solve here, introducing more shocks beyond the financial shock and the TFP shock reduces
the response of endogenous variables to the financial shock. One economic explanation
for this is that in the presence of more aggregate shocks, households have a larger precau-
tionary incentive. Hence, knowing that they will face larger aggregate volatility with more
shocks, they build up more insurance through precautionary savings. In response to one of
these shocks realizes, households rely on this savings and react less to the aggregate shock.

In the context of our model here, integrating more shocks dampens the response of
the economy to the nonlinear financial shock. The methodology of generative economic
modeling allows users to integrate more shocks to study the implications that integrating
more shocks has for their model.

6 Conclusion

Our study introduces generative economic modeling, a novel approach that combines con-
ventional solution methods with artificial intelligence to overcome computational barriers
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Figure 11 Generalized impulse response functions for a heterogeneous agent New Keynesian economy with a
financial friction, solved with generative economic modeling. Each panel shows percentage deviations from
the stochastic steady state. We initialize the economy at its stochastic steady state and apply a one time
innovation to the financial wedge A;, which follows an AR(1) process. In both cases the AR(1) shock implies
an initial decline of 7.5% in )\;. We compare two solution networks: one trained on all shocks (blue) and
one trained only on the financial shock and a TFP shock (orange). One period corresponds to one year in the
baseline calibration.

in solving complex dynamic economic models. By using neural networks trained on data
generated from satellite models, we provide an alternative to standard deep learning-based
approaches, which often require extensive fine-tuning and can suffer from instability due to
their endogenous feedback loops. In contrast, our methodology ensures stability and scal-
ability by using precomputed solutions from conventional methods, allowing for efficient
training and accurate approximations of the full economic model.
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The results demonstrate that this approach can successfully capture model dynamics
with high precision, yielding prediction errors comparable to those of deep neural networks
trained on full model data. We also show that the Euler equation error can be used as a
direct measure of fit for our approach, enabling an ex-post validation on a case-by-case
basis. Importantly, our method extends the applicability of conventional global solution
methods by using recent advances in artificial intelligence. This is particularly valuable for
models featuring higher-order nonlinearities and heterogeneous agents, where the curse
of dimensionality poses significant computational challenges.

Our general approach offers several promising avenues in the future. First, it can be
applied to more complex environments, such as solving nonlinear HANK models by training
on simplified RANK and linearized HANK models. Second, it has the potential to enhance
model estimation techniques, where fast and reliable solutions are critical. Lastly, training
the neural network on multiple distinct models would potentially open up the possibility of
using it as a general starting point for economic analysis, as different model features could
then be easily added or removed.
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Appendix

A Appendix: Solution of the Asset Pricing Model

This section illustrates our methodology using an analytical asset-pricing model and de-
velops intuition for why the methodology works. In all our applications, the solution of
a model is a set of policy functions that express controls as a function of state variables.
In this first analytical example, the control variable we are looking for is the price of a
nominal bond ¢;. Let’s assume that the price satisfies the Euler equation:

1 C.
with 7y = InIl;, A¢ = InCy — InC;_,, where II; is gross inflation between period ¢ and
t—1, C; denotes consumption, as well as 3, and v are the discount factor and risk-aversion,
respectively. We can write the equation more compact as

q = PE, eXp(iﬁ’ym), (62)

where y; = [m;, A¢;]’ and J = [-1, —v]'. Hence, the control variable ¢; is a forward-looking
variable, which depends nonlinearly on the expectations over the dynamics of the state
variables ;. ;. In quantitative models, the policy functions we aim to solve for have a
similar form as (62). For example, households make consumption-savings decisions and
firms make capital accumulation decision by forming expectations about the future. To
solve for the exact policy function, we need to introduce a law of motion for the states. We
assume that the dynamics of the states y, are described by a VAR(1) without intercept

Y = Ay + e, (63)

with e, = ne;, where ¢, is distributed N(0,I). n is a n, x n. matrix, where n, = 2 is
the number of states, and n, is the number of shocks. This implies that e, is distributed
according to a N(0,X), with variance-covariance matrix ¥ = nn’. We give the shocks an
economic interpretation by assuming ¢, = [¢% ¢, €¢"). Hence, the first shock denotes a
TFP-shock, the second shock denotes a discount factor shock, and the last shock denotes
a markup shock. The n matrix then denotes the loadings of the shocks onto the state
variables. With these assumptions, the solution for the asset price ¢, can be expressed as?®

25 The VAR(1) specifies that the vector of variables y, is distributed according to a multivariate normal dis-
tribution. Together with the identity E; exp(z¢41) = exp(p, + 33,) for a normally distributed vector
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- 1o -
q = Bexp (w’ut + §w'v;w> (64)

where 1; = Ay, denotes the conditional mean forecast, and V; = ¥ the conditional
variance of the variables in y;. Let 7,;, and a;; denote the entries in the 7th row and j’th
column of the shock impact matrix n and the matrix of the VAR A, respectively. Then the
full solution for the price of the asset can be written as

q: = Bexp < — (@11 +yag) m — (a12 + yasa) Ag

+ % [(7711 +9n91)% + (2 + Y122)* + (3 + 7?723)2}> . (65)

Equation (65) expresses how the bond price depends on the inclusion of different shocks to
our dynamic system of equations. While the first line components remain unchanged, the
second line changes depending on the shocks that we include in the model. Consequently,
this model serves as a natural illustration for the functionality of our approach.

When solving a simplified version of the above model that contains only two of the three
shocks, the entries 7;. and 7. are equal to zero, where the - is a placeholder for the shock
which is not included, anymore. Let us denote the resulting equilibrium price without a
shock i by qt\i. Consequently, simplified model versions feature the prices

0" = Bexp ( — (a1 +vag1) m — (aio + yas) A

+3 [(0 +7-0)% + (m2 +ym22)* + (ms + 77723)2}> (66)
0, = Bexp ( — (a1 + yag) mp — (age + yag) Ag

+3 [(7711 +3m21)” + (047 0)* + (s + 77723)2}) (67)
g, = Bexp ( — (a1 +ya91) T — (a12 + yas) Ac

+3 [(7711 + 1) + (2 4+ ym22)* + (0 + 7 - 0)2}) (68)

xt41 ~ N(0,X,) we obtain the closed form expression for the asset price.
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Equations (66) - (68) illustrate that shutting down one individual shocks reduces the price
of the risk-free bond compared to the specification with all shocks by a constant. Moreover,
we can also illustrate the solution of the bond price with only one shock active at each
time. For each shock ¢, we indicate the equilibrium price of this bond as ¢':

q; = Bexp ( — (@11 + yagy) m — (a2 + yasa) A
1 2 M2 2
+ 5[ (71 +m21)” + (0 + 7+ 0)” + (0 +~0) (69)
CJtC = Bexp < — (@11 + yagy) m — (a2 + yasa) A
1 M2 2 2
+ 5[0+ 0)" 4 (2 +v122)° + (0 +~0) (70)
qi = Bexp < — (@11 4+ yagy) m — (a2 + yas) A

+ % [(0 + - 0)2 + (0 + 70)2 + (7713 + ’77723)2}) (7D

B Appendix: Real Business Cycle Model

We use an extended stochastic RBC model composed of a firm sector, a household sector,
and a government sector to test the predictive power of our method. The firm sector com-
prises (i) final goods producers who bundle the intermediate goods, (ii) intermediate goods
producers who rent out labor services and capital from perfectly competitive markets but
face monopolistic competition in the goods market as they produce differentiated goods,
and (iii) producers of capital goods who turn final goods into capital subject to adjustment
costs.

Households earn income from supplying labor n; and capital k;;, and earn profits II;
from owning the firm sector. Households spend their income for consumption ¢;; and
capital investment k;; ;.

Finally, the government levies distortionary labor- and capital-income taxes with tax

rates 7 and 7¥, besides a value-added tax on consumption 7¢

. Raising taxes is purely
distortionary since the government returns the tax revenues to the household via lump-

sum transfers 7;.
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Production sector: The production sector features final, intermediate, and capital
goods producers. Final goods producers bundle varieties j of differentiated intermediate
goods according to the Dixit-Stiglitz aggregator

1 Bt

with elasticity of substitution “L—:l We allow the markup u; to evolve stochastically as an
AR(1) in its log

o2
Inp = (1-pp) (lnu - 7“) +puInpy + ¢ with €' ~ N(0,07). (73)

The shock ¢} is normally distributed with mean zero and variance o7,. Firms can adjust

prices in each period, hence markup shocks only redistribute between profits and the factor
incomes.2¢

Final goods producers purchase a variety of goods from a continuous range of intermedi-
ate producers indexed by ;. Production of intermediate goods occurs according to constant
returns to scale Cobb-Douglas production technology which combines labor N, and capital

services u;; K, taking into account capital utilization u,;; according to
Vi = Ay (ujK)™ (2N ), (74)

where o denotes the capital share in the Cobb-Douglas production function, A, denotes
aggregate productivity and Z; denotes labor-augmenting technology. Firms can choose the
intensity with which they use their capital stock K;; by adjusting the capacity utilization
uj;. An intensity higher than normal results in increased depreciation of capital according
to 0(ujt) = dor + 01(uje — 1) + 82/2(u;; — 1)?, which is an increasing an convex function of
utilization if 5, 5, > 0.

The producer minimizes costs, w;N;; — [r: + q:6(u;t)| K, where r, and ¢ are the rental
rate and the (producer) price of capital goods and w; is the real wage. Factor markets
are perfectly competitive and all intermediate goods producers are symmetric. Therefore,
we drop all indices j and only refer to the aggregate variables. We can characterize the

1 1—pe
26 Each differentiated good is offered at price p;;, the aggregate price level is P, = ( i p;t’“t dj) and

1—py
demand for each of the varieties is y;; = (%’) " Y,. In a symmetric equilibrium, this boils down to

pjt = P, Vj and y;; = Y; Vj and we do not need to keep track of prices hereafter.
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first-order conditions for labor and effective capital as

a w K\ ay,

d =—A — 5
Tt + 0 (uy) P tUt (ZtNt) K, (75)

11—« Uth)a -« Y;
and w,=—AZ|—) = —. (76)

: we t<ZtNt pe Ny

The optimal utilization choice is given by
a—1
(6] Uth « }/;

01+ 0o = 1) pe (ZtNt) e Uy 77

As a result, aggregate profits are II, = y,Y;. The logarithm of productivities A; and Z;
evolve stochastically according to AR(1) processes

2

InA; = (1—pa) <lnA — 0—2’4) +paln A+ €' with € ~ N(0,0%), (78)

2
and InZ, = (1—py) <an - %) +pzInZ, +ef with € ~ N(0,0%). (79)

p; and o? with i € {A, Z} denote the autocorrelation of the log-technology shocks and the
variance of their normally distributed innovations, while A and Z denote the unconditional
means of the stochastic processes. Moreover, we allow time-varying depreciation rates d,,
which evolves according to

St = 6o + € with € ~ N(0,02). (80)

Finally, capital goods producers take the relative price of capital goods, ¢, as given when
determining their output. They face capital adjustment costs as in Hayashi (1982) and

o0 ]- K
{1%1%2(0 Eg ZAO,t {C]t |:It - % (?tt - 5075) Kt:| - It} . (81)

where k > 1. To enhance the complexity of the mode, the adjustment costs feature a non-

maximize

linear element. In particular, ¢, is state-dependent and depends on the level of aggregate
capital:
¢ fK,>K
=< T (82)
? if Kt > K
where K > K > 0. Note that capital good producers take the adjustment costs as given as
they depend on aggregate capital.
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Optimization yields the optimality condition

[ rk—1 -1
4 = ll—@ (é—éot) ] : (83)

Each capital goods producer will adjust its production, until (83) is satisfied. Since all
capital goods producers are symmetric, we obtain a law of motion for aggregate capital

]’ K
Kt+1 = (1 — 6(Ut)) Kt + -[t — ﬁ (?t — 6) Kt' (84)

R t

Having specified the production sector, we now describe the households in the economy.

Household sector: There exists a unit continuum of (potentially heterogeneous) house-
holds indexed by i € [0, 1] which maximize their lifetime utility discounted by the factor .
The households obtain utility from consumption c¢;; and disutility from supplying labor n.
To smooth consumption, households accumulate capital k;,;. The household’s objective
function is

CitsNit ki1

Uy = max EtZ@%ﬂ(%;Wzﬁ% (85)
t=0

with E; denoting the expectation operator over all stochastic processes given the informa-
tion set as of time ¢ and u(c;;, n;;) denotes the per period felicity function of the household
over consumption ¢;; and labor n;. (; is a stochastic aggregate shock to the discount factor
in period ¢. The logarithm of the discount factor shock (; evolves stochastically according
to an AR(1) process

2
o
InG=—(1- p§)7C +pcln¢ i +e with € ~ N(0,02). (86)
p¢ denotes the autocorrelation of the logarithmic discount factor shock, and the shock ¢ is
normally distributed with mean zero and variance ag. Households optimize the objective
function (85) subject to the budget constraint

(1 + TC)Cit + qtkitﬂ = (qt + (1 — TK)Tt) kit + (1 — TL)wthitnit + Tt + Hz’t‘ (87)

r, and w; denote the interest rate and wage rate as specified above and h;; denotes house-

C

holds’ idiosyncratic income component. 7¢, 7, and 7% denote the value-added-tax, the

capital income tax, and the labor income tax, while 7; denotes the transfers the households
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obtain from the government. II;; denotes the individual part in aggregate profits. In all
applications, households face a borrowing constraint, such that they are prohibited from
holding negative amounts of assets. Individual productivity h;; evolves according to

2

o .
log hit = —(1 — pp) =2 + pplog hy_y + e?t with ¢

5 "~ N(0,0}). (88)

(2
with €, as a normally distributed shock with variance ¢ and mean zero.

The solution of the household problem can be characterized by the Euler equation on
capital and the optimal labor supply schedule below

quc(cit, ni) = BE % (Qt+1 + (1 - TK)Tt+1) uc(City1, Mit 1) (89)
t
Uc\Cit, 1y
_UL(Cita nit) = (1 - TL)MJM%- (90)

uc(Ci, i) = %(Cm n;;) denotes the partial derivative of the felicity function with respect
to consumption and wuy (¢, ny) = 8%(%, n;) denotes the partial derivative of the felicity

function with respect to labor.

Government sector: The government levies distortionary capital and labor income tax-
ation at flat rates 7 and 7%, and claims a value-added-tax 7¢ on consumption. It uses the
tax revenues to finance lump-sum transfers 7} to the household. Therefore, the role of the
government is purely to redistribute between factor incomes and consumption and leisure.
The budget constraint is

T, = 79Cy + 751 Ky + 78w, N, (91

Government transfers 7; adjust residually to make the government budget constraint hold.

Market clearing and equilibrium: The labor market, the capital market, and the goods
market have to clear at all periods. Labor and capital market clearing requires

1 1
Nt = / nztdz and Kt = / k‘ltd’l (92)
0 0

Given these aggregate quantities, prices are determined by their marginal products on the
factor inputs as denoted in equations (75) and (76). The goods market clears when

Yi=Ci+ I, (93)
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where I, = K;1 — (1 — 0(w)) Ky + % (If(—tt — 0) K, denotes aggregate investment into next
periods capital stock net of adjustment costs and C; = fol cipdi is aggregate consumption.
The goods market clears due to Walras-Law whenever the capital and the labor market

clear.

Dynamic equilibrium: We define a dynamic equilibrium in this economy as follows.
Firms and households take prices as given. Households behave optimally to maximize
their lifetime utility (85) subject to the associated budget constraint (87) and the stochastic
processes. Firms choose their factor inputs to maximize profits given their Cobb-Douglas
production technology until the optimality conditions (75), (76), and (77). Lump sum
taxes adjust such that the government budget constraint (91) holds, while the labor and
asset markets (92), and the goods market (93) clear.

B.1 The analytical model

Derivation of the analytical model The part below derives the proof related to the an-
alytical model in section 4.2.1. To solve the model analytically, we abstract from shocks
to the discount factor ((;) and depreciation rate (5;). We keep the shocks to technology
(Ay), productivity (Z;), shocks to the markup (). Finally, we abstract from capital in-
come taxation (7% = 0) and assume full depreciation (dy; = 1).2” Moreover, we abstract
from household heterogeneity and let households be ex-ante identical by assuming away
differences in idiosyncratic income h;; = 1 and II;; = II; Vi and initial capital holdings are
identical k;p = K, Vi. We make households ex-post identical by disregarding idiosyncratic
income risk o7 = 0. The absence of ex-ante or ex-post heterogeneity enables us to repre-
sent the household side through a representative agent. Therefore, we drop the individual
index i to describe the variables of interest.

Proof. The proof employs a guess-and-verify approach. Guess that the policy function for
savings is given by K;,; = I'Y,. Substituting the guess into the goods market clearing
condition (93) while imposing the parameter restriction § = 1 yields

27 The combination of the assumptions renders the model unrealistic, as already noted by Brock and Mirman
(1972) themselves. We do not employ the model for realistic reasons, but because it provides us with an
analytical benchmark we can use. This also motivates the choice of our shocks.
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Table B.1 Parameter values of the analytical Brock and Mirman (1972) model

Parameter Value Description Parameter Value Description
Households Exogenous processes
B 0.96  Discount factor A 1.0 Steady state TFP
¥ 5 Inverse Frisch Pa 0.9 TFP persistence
w 1.0 Scale labor disutility Oa {0.0, 0.01, 0.05}  TFP std.
Z 1.0 Steady state labor prod.
Firms Dz 0.9 Labor prod. persistence
@ 0.33  Capital share o2 {0.0, 0.01, 0.05}  Labor prod. std.
1) 1.0 Depreciation rate I 1.1 Steady State Markup
Pu 0.0 Markup persistence
Government ou {0.0, 0.01, 0.05}  Markup std.
Tk 0.0%  Labor tax rate level
R 0.0%  Capital tax rate level
7€ 0.0%  Value-added tax rate level

NOTE - All parameters in the table are calibrated to a yearly frequency.

We use the two guesses and substitute into the Euler equation (89)

1 _a Y41 1 o
RN st R Y| |
o =T TRy Al s yy o

from which it is straightforward to see that I' = OL—B given that Etﬁ = p~t with p, = 0.
Note that the value-added-tax (1 + 7) drops from the Euler equation, since it is constant
over time. To obtain the policy function (35) we substitute the guesses with specified I"
into the labor-supply condition (??)

(1 —7V)w, (1—-7M(1 - «a)
= wN7Y t = wN7Y
A+00  “" T L0+ -DN, e
from which we obtain expression (35) when solving for N;. O

With KPR-preferences with log-felicity over consumption the income and substitution
effect of wage changes cancel out. Therefore, only shocks to the wage tax rate 7> and the
markup p; impact the level of equilibrium labor supply.

Calibration Table B.1 illustrates the parameter values that we use for solving the model.
We largely use standard values from the literature, but some variables require further ex-
planation. First, we have a steady-state markup p of 1.5, which is very high. We introduce
such a high markup value such as to amplify the effects of markup shocks on the economy:.
Moreover, we shut down the government by setting all tax rates equal to zero. Finally,
we do not only simulate the economy with fixed volatilities of the shocks but allow for
different volatility levels. While the model only features three shocks, the shocks can have
different volatilities, such that we generate data sets for all three shock combinations with
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Figure B.1 Training and validation convergence for the analytical variant of the RBC model. The figure shows
the loss over the training sample (left) and validation sample (right). An epoch is completed when all the
training or validation sample points are utilized. The vertical axis is expressed on a logarithmic scale.

different volatilities. This also challenges the surrogate network since it needs to learn the
model dynamics for different shock volatilities.

Neural network and training The network architecture features five hidden layers with
128 neurons each, linear activation functions in the input and output layers, and CELU
activations in all hidden layers. We train the network using the AdamW optimizer to mini-
mize the mean squared error between predicted and true values. The learning rate follows
a cosine annealing schedule, starting at 10~ and decaying below 10~% over the course of
training. The dataset is divided into a training and a validation sample. Figure B.1 shows
the mean squared residual for the training and validation samples, which shows that the
loss converges to 10~7. While the validation loss is slightly larger, there is no overfitting, as
the non-increase in the validation loss highlights.

B.2 Nonlinear version

Table B.2 presents the parameter choices for solving the model. Most parameters align with
standard values in the literature but are calibrated at a quarterly frequency. Compared to
the model in Section 3.1, we introduce partial depreciation, a capacity utilization choice, a
lower Frisch elasticity of labor supply, and capital adjustment costs. Additionally, we incor-
porate nonlinear capital adjustment costs by allowing ¢, to take values ¢ and ¢ depending
on the capital stock. The other parameters are standard.

The model features strong nonlinearities as the impulse response functions (IRFs) in
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Table B.2 Parameter values of the nonlinear medium-sized RBC model

Parameter Value Description Parameter Value Description
Households Firms
o 1 Risk aversion o 0.33  Capital share
154 0.99  Discount factor do 0.025 Depreciation rate
o' 1 Inverse Frisch o1 0.43 Depreciation rate
w 0.5 Scale labor disutility o2 0.43  Depreciation rate
K 2 Cap. adj. cost curvature
@ 2.5 High slope of cap. adj. cost
Exogenous processes ¢ 0.025  Low slope of cap. adj. cost
A 1.0  Steady state TFP B
Pa 0.95  TFP persistence Government
Ca 0.01  TFPstd. L 0.0%  Labor tax rate level
¢ 0.95  Discount factor persistence T 0.0%  Capital tax rate level
o¢ 0.05  Discount factor std. ¢ 0.0%  Value-added tax rate level
os 0.004 Depreciation std.

NOTE - All parameters in the table are calibrated to a quarterly frequency.
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Figure B.2 IRFs and Nonlinear Propagation of the TFP Shock

Figure B.2 highlight. In this simulation, we compare the impact of an expansionary and
contractionary three-standard deviation TFP shock. We display the percentage deviation
from the stochastic steady state and mirror the IRFs of the negative TFP for easier compar-
ison. The state-dependent investment costs result in strong differences between positive
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Figure B.3 Training and validation convergence for the non-linear medium scale RBC model. The figure
shows the loss over the training sample (left) and validation sample (right). An epoch is completed when all
the training or validation sample points are utilized. The vertical axis is expressed on a logarithmic scale.

and negative shocks. We observe a similar behavior when evaluating the preference and
discount rate shock. This is an important precondition for our analysis as we want to
evaluate the performance of our approach in a highly nonlinear environment.

Neural network and training The network architecture features five hidden layers with
128 neurons each, linear activation functions in the input and output layers, and CELU
activations in all hidden layers. The optimizer employed is AdamW, and training minimizes
the mean squared error between the predicted and true values. The learning rate follows
a cosine annealing schedule, starting at 10~ and decaying to 10~'°. The dataset is divided
into a training and a validation sample. Figure B.3 shows the mean squared residual for
the training and validation samples, which shows that the loss converges to 1.8 x 1073.
Similarly as before, we do not observe an overfitting.

B.3 Heterogeneous agent version

Solution approach This subsection presents the solution to the heterogeneous agent
model following the methodology of Krusell and Smith (1997) and Krusell and Smith
(1998).28 In the consumption-savings problem, households require a prediction of next
period’s capital given today’s state space. With heterogeneous agents, this would typically
require households to track the entire distribution of households over the state space, O,

28 The code is available at https://github.com/Fabio-Stohler/KS1998.
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as an additional state variable, which renders the problem numerically intractable. To ad-
dress this, Krusell and Smith demonstrate that households do not need to keep track of the
full distribution O, but a few moments of the distribution suffice to forecast future capital.
Specifically, they approximate the law of motion for capital using its mean, allowing house-
holds to form expectations based on a simplified perceived law of motion. Let A, 5, and
§ denote the discretized grid of aggregate productivity, discount factor, and depreciation
shock with Ny, N¢, and Ns shocks. We generalize on the original paper and assume that
the law of motion takes the following state-dependent functional form:

Ny N( Ns
In K1 = Po + Z Bailia,=ay + Z Bej Yic=ciy + Z Bsk Lis,=50) (94)
i=1 =1 k=1

Ny NC Ns
+5K1HKt+27A11{At Az}lDKmLZ’chl{ct cg}lﬂKt-FZ%kl{gz sy In K

=1 j=1 =

Our extension allows for an arbitrary many realizations of the discretized shocks and
allows for both the slope and the intercept to vary with each (discretized) aggregate state
value. The solution algorithm consists of an inner and an outer loop. The outer loop
iterates until the coefficients in the regression equation (94) converge. Let

B = (81 {883 1B (B B Db Dbl i)

denote the vector of regression coefficients for the perceived law of motion of iteration n
of the algorithm. Convergence is determined by checking whether the coefficients remain
unchanged across iterations. If the coefficients changed by less then a small ¢, the algorithm
terminates.?’

The inner loop iterates until the household problem is globally solved for a given per-
ceived law of motion for capital. To solve the household side, we discretize the space
(kit, hit, K4, Ay, G, 6;) and use the endogenous grid-point method (EGM) of Carroll (2006)
to solve the household problem given the stochastic processes and the perceived law of
motion. Household policies are updated iteratively until the (inverse) marginal values
of consumption converge. Once the household problem is solved globally, we aggregate
and simulate the economy for 7' periods using the stochastic simulation method of Young
(2010). Finally, using the simulated time series of capital and the aggregate states, we
estimate the regression equation (94) to update the law of motion.

We illustrate the algorithm as follows. Let E, E, denote the discretized vectors of indi-

29 We also verify that the true law of motion for capital closely matches the perceived law of motion, which
is generally the case.
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vidual capital holdings, individual productivity, respectively.

1. For each realization of aggregate states { K, A;, (;,0;} compute labor L, (which de-

pends on the aggregate state), as well as the interest rate r;, and the wage rate w; as

the marginal products of capital and labor. For each realization of the individual state

space {ki, hit, K¢, Ay, (i, 0; } compute household incomes.

2. Initialize the coefficients for the law of motion (94). Typically, the intercepts (5, 51,

Bs, B3) are set to zero, and the slopes (54, 55, s, £7) to one.

3. Given the coefficients for the law of motion, solve the household problem using
EGM?3°:

(@

(b)

(c)

(d)

(e)

®

0
it

Initialize guesses for the policy functions Y, k) defined on the state space

(Kity hig, Kty Ay, (i, 0). Create an initial guess for the marginal value function
gTV?% =1+ T)M The superscript denotes the iteration step mm of the EGM

Ocit *
algorithm.

For each realization of the aggregate state today {K;, A;, (;,d;} forecast next
period’s capital stock using the perceived law of motion. Let K,.; denote the

forecasted capital stock according to the perceived law of motion. Interpolate
oviy !
B a];it

in the next period K;,;. Finally, compute the expected marginal value by inte-

the marginal value from the exogenous grid K onto the perceived value

grating over the realizations of the aggregate { A;, (;, 6;} and idiosyncratic states
{h} and discount the expected value with the discount factor.>!

Apply the inverse of the marginal utility function to the interpolated expected
marginal value to find the policy function of consumption ¢;; on the endogenous
grid k;,.

Compute the endogenous grid points k; from the budget constraint given the
policy ¢;;.

Interpolate the consumption policy function ¢; from the endogenous grid k;,

onto the exogenous grid k to obtain an updated policy function ey

Enforce the borrowing constraint.

30 There exist numerous resources that go into detail in the illustration of the method. We only highlight the
differences that occur due to the presence of aggregate risk. The interested reader might consult Carroll
(2006), Barillas and Fernandez-Villaverde (2007), Hintermaier and Koeniger (2010), and the appendix of
Bayer et al. (2019).

31 Note that the idiosyncratic risk depends on the realization of the aggregate risk.
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(g) Check convergence by verifying for a small ¢, whether the condition |u'~" (%‘%) —

m—1
w! (%) | < eis true. |- | denotes the Euclidean norm. If the condition is

not satisfied, repeat steps (b)—(g).

4. With the converged global policy functions, we aggregate and simulate the economy
using stochastic simulation of Young (2010) for 7" periods:

(a) We set the initial capital stock to the value from the deterministic steady state of
a representative agent economy and denote the capital stock as K.3?

(b) In period ¢, we have capital stock K, which is generally off-grid. To evaluate the
policy functions of the household, we evaluate the individual policy function at
K, by interpolating from the exogenous grid K on the current capital stock K.
Evaluate the policy functions at the current aggregate state { A;, (;, 6; }.

(c) Given household policies evaluated at the state realizations today, we update the
household distribution using the stochastic simulation method of Young (2010).

(d) Repeat steps (b) and (c) for T periods.

5. Discard the first 1000 periods as a burn-in sample. Use the remaining time series to
update the perceived law of motion by regressing the logarithm of the capital stock
on the aggregate states and the lagged logarithm of the capital stock as in equation
(94). Denote the resulting regression coefficients as 3

6. Check whether | Bn — 3" < ¢ for a small e. If the condition is met, stop; otherwise,
update the coefficients as 3" = 3 + (1 —¢)B" " with ¢ € (0,0.5) and repeat steps
(3) - (6).

Note that the description above accounts for all aggregate shocks but also accommodates

cases with fewer aggregate shocks by keeping some of them fixed. We apply steps (1) to

(6) to each satellite model, generating a dataset that is then used to train the surrogate

model.

Calibration Table B.3 reports the parameter values used to solve the satellite models and

simulate the corresponding data. For household and firm behavior, we adopt the param-

eterization from Krusell and Smith (1998), calibrated at an annual frequency. The exoge-

nous shock processes are also specified using standard annual values commonly found in

the literature.

32 We also find a distribution that has the mean of K and initialize the simulation with this distribution.
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Table B.3 Parameter values of heterogenous agent model

Parameter Value Description Parameter Value Description

Households Exogenous processes

B8 0.95  Discount factor Ph 0.9 Idiosy. risk persistence

o 1.0 Risk aversion on 0.15  Idiosy. risk std.
A 1 Steady State TFP

Firms Pa 0.75  TFP persistence

«a 0.36  Capital share Oa 0.02  TFP std.

6 0.1 Steady State depreciation ¢ 1 Steady State Discount fact.
Pe 0.75  Discount fact. persistence

Government o¢ 0.02  Discount Fact. std.

L 0.0%  Labor tax rate level o5 0.01  Depreciation std.

TR 0.0%  Capital tax rate level

¢ 0.0% VAT rate level

NOTE - All parameters in the table are calibrated to a yearly frequency.

(a) Model with TFP and zeta shocks (b) Model with TFP and delta shocks

44 | 4.4 b
s 42 B 4.2
a =
o o]
(9] (]

4.0 4.0

38 38

Model Model
——— ALM ——— ALM
o %0 500 750 To0o 0 250 500 750 1000
Time Time

(¢) Model with zeta and delta shocks (d) Model with TFP, zeta, and delta shocks
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Figure B.4 Model implied series of capital and perceived aggregate law of motion (ALM)

Moreover, figure B.4 illustrates the perceived law of motion of the households in com-
parison to the true law of motion for capital in the economy. As the plot illustrates, the
perceived law of motion and the true law of motion closely align, with the error between
the two lines generally being below one percent of the capital stock.
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Figure B.5 Training and validation convergence for the RBC model with heterogeneous agents. The figure
shows the loss over the training sample (left) and validation sample (right). An epoch is completed when all
the training or validation sample points are utilized. The vertical axis is expressed on a logarithmic scale.

Neural network architecture and training The network architecture features five hid-
den layers with 128 neurons each, linear activation functions in the input and output lay-
ers, and CELU activations in all hidden layers. The optimizer employed is AdamW, and
training minimizes the mean squared error between the predicted and true values. The
learning rate follows a cosine annealing schedule, starting at 10~ and decaying to 10~1°.
The dataset is divided into a training and a validation sample. Figure shows the mean
squared residual for the training and validation samples. The loss converges to 10~° and

there is no overfitting.

C Prediction Errors of Additional Endogenous Variables

This section illustrates additional results of of the error distributions generated by our
methodology for different endogenous variables.

Figure C.1 illustrates the empirical errors for consumption C; and labor L; in the an-
alytical RBC model. The complete model, as well as the generated model achieve very
low prediction errors, which are centered around zero. Figure C.2 shows the identical fig-
ure, however zoomed out beyond relative errors of 0.3 percent. The figure shows that the
complete and the generative models indeed achieve very low prediction errors while the
incomplete submodel generates very large relative errors, that reach up to 80 percent.

Figure C.3 shows the fit of the nonlinear RBC model for other endogenous variables.
With the model featuring rich nonlinearities due to the state dependency in investment

58



Ct Ly

40%

Il Generative
I Complete
30% 4 40% 1 B Incomplete
o 7]
(=] (=)}
8 8 30% 1
< 20% A c
= e
9 9 20% -
10% A
10% A
0% T T T T 0% T T T T
-0.3% -0.2% 0.0% 0.1% 0.3% -0.3% -0.2% 0.0% 0.1% 0.3%
Relative error Relative error

Figure C.1 Approximation error of consumption C; and investment I; for our generative modeling approach
for the analytical RBC model zoomed in on the histogram. We compare here the simulated value to the true
value for 10000 periods for our generative modeling approach (blue). It is compared to using the complete
model (orange) and incomplete model (green), for which we train a neural network using data generated
from the full analytical solution and from a single submodel, respectively.
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Figure C.2 Approximation error of consumption C; and investment [; for our generative modeling approach
for the analytical RBC model. We compare here the simulated value to the true value for 10000 periods
for our generative modeling approach (blue). It is compared to using the complete model (orange) and the
incomplete model (green), for which we train a neural network using data generated from the full analytical
solution and from a single submodel, respectively.

adjustment costs, the prediction error is largest for this proof-of-concept; however, it is
consistently low. For the incomplete model, we see a left shift of the histogram for some
variables due to the nonlinear adjustment costs.

Figure C.4 illustrates the fit of generative economic modeling for investment I; and
aggregate consumption ;. For both variables, the performance of generative economic
modeling is similar to that of the complete model trained on the full dataset and consis-
tently superior to the performance of the incomplete model, trained only on a submodel.
The prediction error for investment [, has a larger variance, as the model features large
depreciation shocks, which introduce additional variability in investment.

Finally, figure C.5 illustrates the prediction errors of the individual policy functions in
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Figure C.3 Approximation error of consumption C; and investment I; for our generative modeling approach
for the nonlinear RBC model. We compare here the simulated value to the true value for 10000 periods
for our generative modeling approach (blue). It is compared to using the complete model (orange) and
incomplete model (green), for which we train a neural network using data generated from the full analytical
solution and from a single submodel, respectively.
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Figure C.4 Approximation error of consumption C; and investment I; for our generative modeling approach
for the heterogeneous agent model. We compare here the simulated value to the true value for 10000 periods
for our generative modeling approach (blue). It is compared to using the complete model (orange) and
incomplete model (green), for which we train a neural network using data generated from the full analytical
solution and from a single submodel, respectively.

the heterogeneous agent model for nine points on the idiosyncratic state space. The figure
illustrates that generative economic modeling achieves comparable errors to the complete
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Figure C.5 Approximation error of individual consumption policies for different points at the state space for
our generative modeling approach for the heterogeneous agent model. We compare here the simulated value
to the true value for 10000 periods for our generative modeling approach (blue). It is compared to using
the complete model (orange) and incomplete model (green), for which we train a neural network using data
generated from the full analytical solution and from a single submodel, respectively.

model trained on the full data generation process, while achieving substantially lower er-
rors than the incomplete model trained only on the data from one submodel.
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Table D.1 Parameter values of HANK model with financial frictions

Parameter Value Description Parameter Value  Description

Households Firms

B 0.95  Discount factor n 20.0 Elasticity of substitution

o 1.0 Utility parameter K 0.4 Slope of the Phillips curve

5 1.0 Curvature of utility

w 0.76  Scale of disutility of labor

Pe 0.9 Persistence of idiosync. shocks

e 0.25 Std. dev. of idiosyncratic shocks

Government Exogenous processes

o 1.5 Taylor rule parameter Pa 0.75 Persistence of TFP shocks

VI 1.107  Reaction of debt to inflation oq 0.0047  Std. dev. of TFP shocks

N 0.5 Reaction of debt to tax revenue p¢ 0.5 Persistence of disc. factor shocks
PB 0.522  Persistence of the debt rule o¢ 0.012  Std. dev. of disc. factor shocks
bss 0.9 Steady-state government debt P 0.5 Persistence of financial shocks
I1ss 1.035 Steady-state inflation o 0.02 Std. dev. of financial shocks

58 1.053  Steady-state nom. interest rate pu 0.5 Persistence mon. policy shocks
T 0.2 Steady-state tax rate o, 0.01 Std. dev. of mon. policy shocks

NOTE — Values are reported to three decimals where applicable. All parameters in the table are calibrated to a yearly frequency.

D Heterogeneous Agent Model with Financial Frictions

To solve the financial HANK model, we build on the algorithm described in Section B.3. In
contrast to the baseline implementation, which relies on a single perceived law of motion,
the financial HANK model requires two: one to forecast the forward-looking component of
the Phillips curve, and another to nowcast current inflation. A detailed description of the
underlying algorithm can be found in the Appendix of Bayer et al. (2019), which served as
the main reference for our implementation.

The parameter values used to solve the model are shown in Table D.1. We adopt an
annual calibration, which speeds up computation by reducing the discount factor. This
choice lowers the computational burden associated with solving the household problem
which is the main numerical bottleneck. The calibration thus reflects an annualized version
of the model in Bayer et al. (2019). For the exogenous shock processes, we adopt parameter
estimates from the similar HANK model in Kase, Melosi and Rottner (2022), while the
parameters governing the financial shock are set directly.

Figure D.1 compares the estimated equilibrium laws of motion for current inflation and
the forward-looking inflation expectation with their true simulated realizations. As the fig-
ure shows, the perceived and true paths are virtually indistinguishable. The mean squared
error between the perceived and true laws of motion over the entire simulation horizon is

below one percent.
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