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Abstract

We study contact tracing in a new macro-epidemiological model with asymptomatic

transmission and limited testing capacity. Contact tracing is a testing strategy that

aims to reconstruct the infection chain of newly symptomatic agents. This strategy may

be unsuccessful because of an externality leading agents to expand their interactions

at rates exceeding policymakers’ ability to test all the traced contacts. Complementing

contact tracing with timely-deployed containment measures (e.g., social distancing or

a tighter quarantine policy) corrects this externality and delivers outcomes that are

remarkably similar to the benchmark case where tests are unlimited. We provide

theoretical underpinnings to the risk of becoming infected in macro-epidemiological

models. Our methodology to reconstruct infection chains is not affected by curse-of-

dimensionality problems.
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1 Introduction

The outbreak of the COVID-19 pandemic set off a worldwide health and economic crisis

of unprecedented proportions. Quickly expanding the capacity for testing, isolation, and

contact tracing has been suggested by several experts to be a crucial step in alleviating

the pandemic’s toll on the economy and mortality.1 For instance, South Korea has com-

bined contact tracing, mass testing, and alternative containment measures to achieve one

of the lowest infection rates in the world. Nevertheless, other countries, such as the U.S.,

have been considerably less successful, notwithstanding sizable investments made in contact

tracing and mass testing. In this paper, we construct a macro-epidemiological model with

asymptomatic transmission and limited testing capacity to study (i) the social value of a

technology enabling policymakers to trace the close contacts of confirmed infected cases,

(ii) why this technology may fall short of delivering the expected outcome, and (iii) how

contact tracing can be combined with alternative containment policies to effectively control

a pandemic crisis.

We model contact tracing as a testing strategy that aims to reconstruct the newly symp-

tomatic cases’ infection chain – i.e., the network of interactions that led a newly symptomatic

case to become infected or to infect other agents. This reconstruction allows the policymak-

ers to decide who to test. The objective of testing is to detect and quarantine as many

asymptomatic spreaders as possible. The epidemiological parameters of the model and the

availability of tests are calibrated to match the U.S. data during the COVID-19 pandemic.

Contact tracing can be unsuccessful because of an externality leading agents to expand

economic and social interactions at rates exceeding policymakers’ ability to trace, test, and

isolate the close contacts of confirmed cases. Complementing contact tracing with timely-

deployed containment policies (e.g., social distancing or a tighter quarantine policy) allows

policymakers to buy time to expand the tracing and testing scale so as to preserve the

viability of the tracing and testing system. Our calibrated model predicts that U.S. test-

ing availability during the COVID-19 pandemic was insufficient to ensure effective contract

tracing without other containment policies.

If this externality is addressed properly by policymakers, contact tracing lowers the

threshold number of infected agents needed to reach herd immunity by leveraging the infor-

mation contained in the reconstructed infection chain of confirmed cases. In addition, the

1For instance, Dr. Anthony Fauci, the director of the National Institute of Allergy and Infectious Dis-
eases, said in an interview with Dr. Howard Bauchner, the editor of the Journal of the American Medical
Association in April 2020 that: “The keys [to a successful response] are to make sure that we have in place
the things that were not in place in January, that we have the capability of mobilizing identification – testing
– identification, isolation, contact tracing.”
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reconstruction of the confirmed cases’ infection channel is critical to enable contact tracing

to effectively detect asymptomatic spreaders at the early stages of a pandemic when there

are only a few spreaders.2 In virtue of these two attributes, contact tracing mitigates both

the consumption drop due to the pandemic and its death toll, allowing policymakers to move

beyond the traditional trade-off between saving human lives and mitigating the economic

costs of the pandemic.

We show that preserving the functionality of contact tracing is optimal. When we solve

the optimal social distancing problem, we find that the planner wants to tighten social

distancing restrictions right before the tracing and testing system would collapse. Scaling up

social distancing measures in that period corrects the externality that threatens the smooth

functioning of contact tracing and, in doing so, leads to economic and health outcomes that

are remarkably similar to to the benchmark case where tests are assumed to be unlimited.

How critical is it for policymakers to be able to run contact tracing smoothly during a

pandemic? Our calibrated model predicts that the social value of being endowed with a viable

contact tracing and testing system is about $8.7 trillion. Given that a tracing technology

is arguably cheap to develop for most countries, this result suggests that it may be cost-

effective for policymakers to invest in such a technology, even if epidemics are expected to be

rather infrequent events. A more comprehensive tracing technology enabling policymakers

to trace contacts for one additional week further increases social welfare by $1.5 trillion. We

also use the calibrated model to show that the social value of having enough tests to supply

to all traced contracts is about $1.6 trillion.

Contact tracing has been used to control the spread of a long list of lethal diseases,

such as tuberculosis, measles, sexually transmitted infections (including syphilis and HIV),

blood-borne infections, Ebola, H1N1 (swine flu), Avian Influenza, SARS-CoV (SARS), and

SARS-CoV-2 (COVID-19).3 However, formally modeling contact tracing is very hard, as

the number of contacts established by an infected subject quickly explodes as the number of

past periods considered increases.

We solve this dimensionality problem by modeling the probability that a susceptible

subject entertains a number of economic interactions with the pool of asymptomatic in-

fected agents as a sequence of Bernoulli trials. The number of trials depends on how much

susceptible agents consume (work), and the probability of success (i.e., meeting with an

asymptomatic infected subject) is assumed to depend on the share of consumption (work) of

2This prediction is in line with empirical findings by Fetzer and Graeber (2021), who show quasi-
experimental evidence that contact tracing is very effective in containing the spread of the virus.

3Contact tracing was originally proposed in 1937 by Surgeon General Thomas Parran for the control of
syphilis in the U.S. and was later implemented to control the spread of this virus in the following years
(Parran, 1937).
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asymptomatic infected people. It follows that the probability for a susceptible agent to have

met a certain number of infected agents is a binomial distribution. This binomial distri-

bution allows us to parsimoniously characterize the endogenous probability of a susceptible

agent becoming infected in a given period. This probability turns out to be isomorphic

to that in macro-epidemiological models (e.g., Eichenbaum, Rebelo, and Trabandt 2021),

thereby providing theoretical underpinnings to that probability, which is typically assumed

in those models.4 Furthermore, this binomial distribution conveniently summarizes all of

the necessary information to reconstruct the infection chains in our model, which is key to

pinning down agents’ probabilities of being traced and tested. This methodology to recon-

struct the history of interactions relevant for contact tracing is general and can be applied

to macro-epidemiological models with multiple sectors or heterogeneous agents.5

Our paper belongs to the macro-epidemiological literature. This literature is quickly

growing in many different directions. The directions more closely related to our paper are:

analyses of the trade-off between saving human lives and mitigating the recession (Gourinchas

2020 and Hall et al. 2020); models to study optimal social distancing (Alvarez et al. 2021;

Atkeson 2020; Bethune and Korinek 2020; Farboodi et al. 2021; Eichenbaum et al. 2021;

Moser and Yared 2022; Piguillem and Shi 2022); models to study more targeted and smarter

policies, such as testing or targeted quarantines, as alternatives to indiscriminate social

distancing measures (Acemoglu et al. 2021; Akbarpour et al. 2020; Atkeson et al. 2020; Aum

et al. 2021; Azzimonti et al. 2020; Baqaee et al. 2020a; Berger et al. 2022; Bognanni et al.

2020; Brotherhood et al. 2020; Chari et al. 2021; Eichenbaum et al. 2022; Favero et al. 2020;

Galeotti et al. 2020; Glover et al. 2020; Hornstein 2022; Krueger et al. 2022); studies of

the distributional consequences of various containment policies (Hacıoğlu-Hoke et al. 2021;

Kaplan et al. 2020; Lee et al. 2021); and models to evaluate the efficacy of public policies

–not based on tracing and testing– in controlling the spread of HIV (Greenwood et al. 2019).

The implementation of contact tracing is plagued by several bottlenecks. An important

part of our analysis is to show that one potential bottleneck –i.e., the limited availability of

tests– may lead to the demise of the tracing and testing system and that this event would

worsen the pandemic’s economic and health outcomes considerably. We study a number

of mitigation policies (optimal social distancing, a tighter quarantine policy, and a mask-

wearing mandate) that can be deployed in a timely manner to shore up the resilience of the

4In the special case in which the virus cannot be spread through consumption and labor interactions, the
probability for a susceptible agent to become infected is isomorphic to the canonical SIR model proposed by
Kermack and McKendrick (1927).

5See Guerrieri et al. (2022) for an example of multisectoral models to study how an epidemic and so-
cial distancing affect aggregate demand and supply. See Kaplan et al. (2020) for an example of macro-
epidemiological models with income and wealth inequalities.
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tracing and testing system. The macro-epidemiological literature has studied the dynamic

complementarities of optimal social distancing with other factors: the limited capacity of

the health system (e.g., Loertscher and Muir, 2021), the arrival time of an effective vaccine

(e.g., Iverson et al., 2022), and the arrival of an effective technology to test and quarantine

infected subjects (e.g., Brotherhood et al., 2020).

Given the hurdles to formally modeling the infection chain of confirmed cases, all the

papers we know take a reduced-form approach to contact tracing (e.g., Alvarez et al., 2021;

Piguillem and Shi, 2022). Typically in these papers, a fraction of agents whose health status

is unknown becomes tested by the government in every period.6 Modeling contact tracing

by taking into account the existence of infection chains as we do has three main advantages.

First, the central result that a well-functioning contact tracing allows policymakers to im-

prove both economic and health outcomes of a pandemics hinges upon the enhanced ability

of contact tracing of successfully detecting asymptomatic spreaders, even at the onset of a

pandemic when it is very hard to do so. We find this result because we take into account

the existence of infection chains. Second, our approach is preferable when one is concerned

about the Lucas critique, which would arise, for instance, if one studies the efficacy of con-

tact tracing under a mutating virus (e.g., a virus mutation resulting in more asymptomatic

infections). Third, our structural analysis of contact tracing helps to calibrate smart testing

in papers that take a more reduced-form approach.

Our paper is also related to the epidemiological literature that studies contact tracing.

Hellewell et al. (2020) model contact tracing based on a branching process, which uses a

negative binomial distribution to keep track of the number of secondary infections that a

person infected with the virus could potentially produce.7 In our analysis, the binomial

distribution is used to model the probability that an agent meets a number of times with

asymptomatic infected subjects while consuming and working. This different approach has

important implications: First, the probability for an agent to be traced is endogenous,

depending on their consumption and labor decisions. Second, our binomial approach allows

us to provide theoretical underpinnings to the infection rate in SIR and Macro-SIR models.

2 The Model

The model economy is populated by agents who consume and work, and firms that hire

labor Nt from agents in a competitive market and produce output according to a linear

6Chari et al. (2021) study targeted testing assuming that infected agents are more likely to receive a
signal about their health status. They interpret the signal as the outcome of a test.

7A similar approach is followed by Ferretti et al. (2020) and other epidemiological papers.
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production function in labor and productivity parameter A. The government levies taxes

on consumption and remits transfers to agents. Labor and output are traded in competitive

markets. Health authorities conduct contact tracing, administer tests, and can quarantine

agents. Agents become infected through interactions with other agents. Following Eichen-

baum et al. (2021), we assume there are three types of interactions through which the virus

spreads out: consumption interactions, work interactions, and other interactions independent

of agents’ decisions.

Every period is organized as follows: First, agents consume, work, and engage in other

interactions. Second, agents’ health status can change: agents can get infected or infected

agents can recover or die. Third, health officials can administer tests. Tests deliver a binary

outcome: positive or negative. Tests do not reveal if an agent has never been infected or has

recovered.

There are six types of agents, who differ in their health status. The first type includes

susceptible agents who have not contracted the disease, are not carriers, and are not im-

mune. Infected agents can be divided into three types: Untested asymptomatic agents if

they have not shown symptoms and have not tested positive, tested-positive agents if they

are asymptomatic but they have tested positive, and symptomatic infected agents if they

have shown symptoms regardless of whether they have previously tested positive. The re-

maining two types are the recovered agents, who have developed immunity. They are the

observed recovered agents, who have shown symptoms or have tested positive and the un-

observed recovered agents, who have recovered without having ever shown any symptoms of

the disease or having ever tested positive.

Observability of Types’ Health Status. Since the untested asymptomatic individuals

are assumed not to show any symptoms of the disease, their health status is not observed

by anyone in the model. The health status of susceptible agents and that of unobserved

recovered subjects is also not observed even if they got tested at the end of the previous

period. This is because tests only say whether the tested individual is currently infected

or not. The health status of tested-positive, symptomatic infected, and observed recovered

agents is publicly observed.

Quarantine. The tested-positive and the symptomatic subjects have their health status

revealed and the health authorities immediately quarantine them.8 Being quarantined means

two things. First, in quarantine consumption and labor decisions are subject to restrictions,

8Untested asymptomatic individuals cannot be quarantined because the health authorities cannot distin-
guish them from susceptible agents.
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which are modeled as a consumption tax. Second, quarantined agents are isolated from other

subjects and cannot infect anyone.

Note that we use the word quarantine to mean a containment policy targeted to a single

subject or a subset of subjects who have been uncovered by the government as potentially

capable of spreading the virus. Therefore, quarantine is different from social distancing,

which refers to an economy-wide containment measure, affecting all subjects regardless of

their health status.

2.1 Meeting Probabilities

The virus in our model spreads out because susceptible agents may meet with untested

asymptomatic agents while consuming, working, or engaging in other non-economic activ-

ities.9 So it is particularly important to characterize the probability that a susceptible

individual meets with untested asymptomatic subjects. We make the following assumption

to characterize this probability.

Assumption 1. Every random interaction of an agent with a set of agents of a specified

type is modeled as a Bernoulli trial.

It then follows that the probability that an individual, who randomly meets n > 0

other agents in a period, meets k-times with agents of a certain type is given by the binomial

distribution B(k, n, p) =
(
n
k

)
pk (1− p)(n−k) , where p is the probability of meeting with agents

of a certain type in one random meeting. In the Bernoullian jargon, there will be n random

trials and in each of these trials the individual meets (success) or does not meet (failure)

with a specified group of people. We make the following assumption about the probability

of meeting with a specified group.

Assumption 2. The probability for an agent to meet with agents of a certain type

a) in one random consumption interaction is given by the share of consumption of the

agents of that type relative to the consumption of non-quarantined agents.

b) in one random working interaction is given by the share of hours worked by the agents

of that type relative to the hours worked by non-quarantined agents.

c) in one random interaction not associated with either consumption or work is given by

the share of agents of that type relative to the population of non-quarantined agents.

For instance, the probability of meeting an untested asymptomatic subject in one con-

sumption interaction is given by the size of the consumption of untested asymptomatic

9Other infected people – tested-positive and the symptomatic individuals – are quarantined and cannot
infect anyone.
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people relative to aggregate consumption. In symbols, CA
t /Ct, where CA

t denotes total con-

sumption of the untested asymptomatic agents and Ct stands for the aggregate consumption

of non-quarantined agents. Analogously, the probability for a worker to meet an untested

asymptomatic worker in one hour of work is assumed to be NA
t /Nt, where N

A
t denotes total

labor worked by the untested asymptomatic group and Nt stands for aggregate labor of

non-quarantined agents. The probability for an individual to meet with an untested asymp-

tomatic agent in one non-consumption, non-labor interaction is assumed to be equal to the

share of population who are untested asymptomatic. In symbols, IAt /Popt, where I
A
t denotes

the size of the group of individuals who are untested asymptomatic and Popt stands for the

size of population of non-quarantined agents.

Assumption 3. An individual of health status i who consumes cit units of goods, works ni
t

number of hours at time t makes φC : cit 7→ N ∪ {0} and φN : ni
t 7→ N ∪ {0}, respectively,

number of interactions, where N∪{0} denotes the set of natural numbers including zero. The

same individual also makes a constant number of φO interactions when engaging in activities

other than consumption and labor.

It follows that the total number of interactions a susceptible individual needs to entertain

to consume cst , work ns
t , and enjoy other activities, is given by φC(c

s
t) + φN(n

s
t) + φO. This

gives us the number of Bernoulli trials due to these three activities in the time unit. We can

think of the mappings φC and φN as monotonically increasing step functions.

Combining all these assumptions allows us to write the probability for a susceptible

individual to meet k-times with the set of asymptomatic subjects while consuming an amount

cst of goods as follows:

fc,t (k) ≡ B
(
k, φC(c

s
t),

CA
t

Ct

)
=

(
φC(c

s
t)

k

)(
CA

t

Ct

)k (
1− CA

t

Ct

)φC(cst )−k

, (1)

k ≤ φC(c
s
t). We can analogously derive the probability for a susceptible individual to meet

k-times with the asymptomatic subjects while working an amount ns
t of hours

fn,t (k) ≡ B
(
k, φN(n

s
t),

NA
t

Nt

)
=

(
φN(n

s
t)

k

)(
NA

t

Nt

)k (
1− NA

t

Nt

)φN (ns
t )−k

, (2)

k < φN(n
s
t). Finally, the probability for any person to meet with people in the asymptomatic

group k times while engaging in other types of interactions is given by

fo,t(k) ≡ B
(
k, φO,

IAt
Popt

)
=

(
φO

k

)(
IAt
Popt

)k (
1− IAt

Popt

)φO−k

, (3)
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k < φO.

Let us denote the number of random interactions due to consumption, work, and other

activities is kc, kn, and ko, respectively. The joint probability for a susceptible individual to

have a triplet of random meetings (kc, kn, ko) with untested asymptomatic people is defined

as follows:

ft(kc, kn, ko) ≡ fc,t(kc) · fn,t(kn) · fo,t(ko). (4)

Assumption 4. Conditional on meeting with an untested asymptomatic individual, a sus-

ceptible agent will become infected with probability τ ∈ (0, 1).

Since this probability of getting infected τ is assumed to be the same across the three

different types of interactions (consumption, work, or others), a susceptible individual en-

tertaining kc + kn + ko interactions with asymptomatic individuals will become infected

with probability 1 − (1 − τ)kc+kn+ko ; that is, one minus the probability that none of these

interactions turns out to be infectious, i.e., (1− τ)kc+kn+ko .

We can characterize the average probability for a susceptible individual to get infected

conditional on consuming cst and working ns
t as follows:

τt ≡
φC(cst )∑
kc=0

φN (ns
t )∑

kn=0

φO∑
ko=0

[
1− (1− τ)kc+kn+ko

]
ft(kc, kn, ko), (5)

where ft(kc, kn, ko) denotes the joint binomial distribution defined in equation (4).

The infection rate τt can be approximated to obtain

τt ≈ Ξ

[
φc · cst

(
CA

t

Ct

)
+ φn · ns

t

(
NA

t

Nt

)
+ φO

(
At

Popt

)]
, (6)

where the coefficient Ξ ≡ − ln (1− τ) (1− τ)k̄c+k̄n+k̄o , with (k̄c, k̄n, k̄o) denote the average

number of interactions at steady state. In Appendix E, we show the steps taken to approx-

imate τt.

The approximated infection rate τt in equation (6) nests the rate in the canonical SIR

model as the special case in which consumption and labor interactions do not transmit the

virus. It is also isomorphic to other leading macro-epidemiological models, in which this rate

is assumed (e.g., Eichenbaum et al. 2021). Since the infection rate in equation (6) stems

from the choice of modeling economic interactions as binomial trials (Assumptions 1-4), our

paper provides theoretical underpinnings to the infection rate used in those models.
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2.2 Agents with Unknown Health Status

As discussed earlier, susceptible, untested asymptomatic, and unobserved recovered individ-

uals do not know their health status. To keep the model tractable, we assume that these

agents make consumption and labor decisions in the belief that they have never been infected

and thereby are susceptible. While this assumption has a behavioral flavor, it has minimal

implications for our conclusions because our analysis is primarily focused on dynamics at

the beginning of a pandemic when the economy is far away from achieving herd immunity.10

Conditional on the belief of having never been infected, agents’ beliefs about future changes

in their health status are model consistent. It follows that the agents who do not know their

health status choose their consumption cst , and labor ns
t so as to maximize

V S
t = max

cst ,n
s
t

u (cst , n
s
t) + β

[
(1− τt)V

S
t+1 + τt

{
πT
P,tV

P
t+1 +

(
1− πT

P,t

)
V A
t+1

}]
, (7)

where the utility function u (ct, nt) = ln ct − θ
1/η

n
1/η
t and β denotes the discount factor. We

denoted all the variables in equation (7) with the superscript S because these agents believe

they are susceptible.

These agents expect to be infected with probability τt, which is defined in equation (5).

Conditional on this event, the agents expect with probability πT
P,t to test positive at the end

of period t and thereby to receive the utility V P
t+1 of the tested-positive agents in period t+1.

This value function will be defined in Section 2.3. With probability (1 − πT
P,t), the agents

expect to become untested asymptomatic and receive the utility V A
t+1, which, in period t, is

given by

V A
t = u(c̃st , ñ

s
t) + β

[
πISV

IS
t+1 + πRV

UR
t+1 + (1− πIS − πR)

(
πA
P,tV

P
t+1 + (1− πA

P,t)V
A
t+1

)]
,

(8)

where c̃st and ñs
t denote the optimal solution to the problem in equation (7) since untested

asymptomatic agents do not know their health status. Conditional on becoming untested

asymptomatic in period t+1, they expect to become infected symptomatic in the next period

with probability πIS and receive utility V IS
t+2 –defined in Section 2.4. They expect to become

unobserved recovered with probability πR and to receive the utility V UR
t+2 , which is defined

for the period t as

V UR
t = u(c̃st , ñ

s
t) + βV UR

t+1 . (9)

10Solving the imperfect information problem under full rationality requires keeping track of when agents
were tested last and therefore is very cumbersome.
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The unobserved recovered agents have never shown any symptoms and hence do not know

their health status. Hence, they choose consumption and labor by solving the problem in

equation (7). If the untested asymptomatic agents neither develop symptoms nor recover,

they expect to test positive at the end of period t+1 with probability πA
P,t+1 and receive the

utility function V P
t+2 in the next period.

The probabilities of testing positive for a newly infected agent, πT
P,t in equation (7), and

for an asymptomatic agent, πA
P,t in equation (8), are characterized in Section 3.

Budget constraint for the non-quarantined agents. The problem is subject to the

budget constraint for non-quarantined agents.

(1 + µS
c,t)c

s
t = wS

t n
s
t + ΓL

t , (10)

where µS
c,t denotes a tax on consumption proxying the effects of a government-imposed social

distancing on consumption and labor. By reducing consumption and labor, social distancing

curtails agents’ economic interactions. In doing so, social distancing reduces the probability

for susceptible individuals to become infected (τt) and, as we shall show, the number of

traceable contacts health authorities have to test at the end of the period. The consumption

tax revenue is rebated to the agents the tax is levied on, ΓL
t . The equilibrium wage wS

t equals

the agent’s labor marginal productivity.

2.3 Tested-Positive Agents

Tested-positive agents are individuals who know they are infected even though they do not

have symptoms. They choose consumption, cPt and labor nP
t so as to maximize

V P
t = max

cPt ,nP
t

u
(
cPt , n

P
t

)
+ β

[
πISV

IS
t+1 + πRV

OR
t+1 + (1− πIS − πR)V

P
t+1

]
, (11)

where the tested-positive individual can develop symptoms with probability πIS and, in this

case, the individual will receive the utility V IS
t+1 in the next period. The health status of the

tested-positive individual can also change to observed recovered with probability πR and, in

this case, the individual will receive the utility V OR
t+1 in the next period. If the tested-positive

individual neither develops symptoms nor recovers, they will remain in their current status.

Budget constraint for the quarantined agents. Tested-positive agents are subject to

quarantine until they recover. Thus, the maximization problem for these agents is subject

10



to the following budget constraint

(
1 + µQ

c + αµS
c,t

)
cPt = wP

t n
P
t + ΓQ

t , (12)

where µQ
c proxies the effects of imposing a quarantine on individuals’ consumption and labor

decisions. Social distancing is assumed to affect consumption of quarantined subjects as well.

The parameter α ∈ (0, 1) controls the additional effects of social distancing on quarantined

agents’ consumption. The tax paid by quarantined agents is rebated to them, ΓQ
t .

2.4 Infected Symptomatic Agents

As the symptoms of the disease develop, agents observe their health status, which becomes

infected symptomatic. An infected symptomatic subject chooses consumption cISt and nIS
t

so as to maximize

V IS
t = max

cISt ,nIS
t

u
(
cISt , nIS

t

)
+ β

[
πRV

OR
t+1 + (1− πR − πD)V

IS
t+1

]
, (13)

subject to the budget constraint for quarantined subjects, which is shown for the tested-

positive agents in equation (12). The probability πR denotes the probability that the health

status of the infected symptomatic individual changes to observed recovered and the indi-

vidual will receive V OR
t+1 in the next period. The probability πD denotes the probability that

the infected symptomatic individual dies and, in this case, they will get zero utility forever.

If neither event happens, the infected symptomatic individual will not change their health

status in the next period.

The equilibrium wage paid to the agents is determined by the agent’s marginal productiv-

ity of labor, which is assumed to be lower when the symptoms of the disease have developed.

This penalty on labor productivity is given by ϕ < 1.

2.5 Observed Recovered Agents (cont’d)

Observed recovered agents are agents who know they have been infected at some point in

the past either because they tested positive or they showed the symptoms of the disease.

Since they have become immune to the virus, their health status will never change again

and their decision problem reads:

V OR
t = max

cOR
t ,nOR

t

u
(
cOR
t , nOR

t

)
+ βV OR

t+1 , (14)
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subject to the budget constraint for non-quarantined subjects in equation (10).

2.6 The Government Budget Constraint

The government balances its budget in every period by satisfying the conditions

µS
c,t

[
Ct + α

(
CIS

t + CP
t

)]
= ΓL

t

(
St + IAt +RU

t +RO
t + (1− α)

(
ISt + Pt

))
, (15)

µQ
c · CIS

t = ΓQ
t · ISt , (16)

µQ
c · CP

t = ΓQ
t · Pt, (17)

where we denote the share of susceptible individuals with St, the share of untested asymp-

tomatic individuals with IAt , the share of symptomatic infected individuals ISt , the share

of tested-positive individuals with Pt, the share of unobserved recovered with RU
t , and the

share of observed recovered individuals with RO
t . Recall that Ct denotes consumption of

non-quarantined agents. CIS
t ≡ cISt ISt and CP

t ≡ cPt Pt stand for total consumption of the

infected symptomatic agents and that of the tested-positive agents, respectively. There is no

fiscal redistribution. The revenues of the social distancing and quarantine taxes are rebated

to the agents these taxes are levied on.11

2.7 Dynamics of Agents’ Types

We now describe the evolution of the six types of agents. The law of motion for the share of

susceptible agents reads St+1 = St−Tt, where Tt denotes the share of newly infected subjects

in period t. This share is defined using the law of large numbers as follows: Tt = τt · St,

where τt is the expected probability for susceptible individuals to become infected – defined

in equation (5).

The size of untested asymptomatic agents evolves according to the law of motion

IAt+1 = (1− πT
P,t)Tt + (1− πA

P,t)(1− πIS − πR)I
A
t , (18)

This set of agents is given by those who were untested asymptomatic IAt at the end of the

previous period and have not developed symptoms, recovered, or tested positive at the end

of the current period. Moreover, subjects who have become infected in this period, Tt, and

have not tested positive will also join the set of untested asymptomatic subjects in the next

period.

11We abstract from fiscal policy in this study, which is primarily focused on assessing the efficacy of contact
tracing. Bianchi et al. (2020), Mitman and Rabinovich (2021), and Hagedorn and Mitman (2020) study how
fiscal policy should respond to pandemic recessions.
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The pool of tested positive subjects is given by

Pt+1 = (1− πIS − πR)Pt + πT
P,tTt + πA

P,t(1− πIS − πR)I
A
t . (19)

Tested-positive subjects in the current period are people who had this health status at the

end of the previous period and have neither developed symptoms nor recovered. The infected

agents who have just tested positive also join the tested-positive pool.

The pool of infected symptomatic people evolves as follows:

ISt+1 = (1− πR − πD)I
S
t + πIS(I

A
t + Pt). (20)

A fraction of infected symptomatic agents recovers or dies in the period and the remain-

der remain infected symptomatic. Untested asymptomatic and tested-positive agents can

develop symptoms and become symptomatic infected subjects.

The share of unobserved recovered evolves as follows: RU
t+1 = RU

t + πRI
A
t . This health

status is an absorbing state and the magnitude of this set of agents is increased by untested

asymptomatic agents who recover in every period. The share of observed recovered evolves

as follows: RO
t+1 = RO

t + πR(Pt + ISt ). This health status is also an absorbing state and the

magnitude of this set of agents increases as tested-positive and infected symptomatic agents

recover.

The measure of population is given by the sum of these six groups. Note that the

population size may vary because infected people die. The share of agents who have died by

period t+ 1 is given by Dt+1 = Dt + πDI
S
t .

The only two variables we have not yet defined are the probability of testing positive for

newly infected agents, πT
P,t, and untested asymptomatic agents, πA

P,t. The characterization

of these probabilities is the object of the next section.

3 Contact Tracing and Testing

Health officials test subjects whose health status is unknown; that is, susceptible, untested

asymptomatic, and unobserved recovered agents. In our model, an agent can be infected

and remain asymptomatic throughout their entire infection. These agents are undiscovered

spreaders who keep infecting susceptible agents until they recover or get quarantined because

they test positive or become symptomatic. Tests do not reveal when a positive agent was

infected or whether a negative agent is still susceptible to getting infected or has recovered.

Results can be false-negative.

Contact tracing is a testing strategy whose aim is to ex-post reconstruct as much as
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Figure 1: Example of an infection chain. The blue solid circles indicate an asymptomatic
person. The green dashed circles are susceptible or recovered agents. The red
lines describe an interaction that leads to an infection, while the gray lines de-
scribe an interaction that does not lead to an infection.

possible of the newly symptomatic cases’ infection chain; i.e., the network of interactions

that led a newly symptomatic case to become infected or to infect other agents. How much of

the infection chain can be known by health officials defines the efficiency of the contact tracing

technology. We consider two levels of efficiency of the tracing technology: a technology that

allows health officials to trace only those contacts that have occurred during the current

week and a more comprehensive technology that allows them to trace contacts up to one

week back. When we say contact tracing, we generally refer to the first technology. When

we say comprehensive contact tracing or simply comprehensive tracing, we mean the second

technology.

It is useful to resort to a graphical example to illustrate how contact tracing works in the

model. In Figure 1, agent A, who caught the virus in period t− 2, infects agent B in period

t− 1. In the next period, agent A infects further two agents, who are denoted by C and D.

At the same time, agent B also infects agent E. In period t, agent A also met subject Z, who

was however infected by subject V. The gray line connecting subject A and Z means that

this was a non-infectious meeting. The other subjects, who are denoted by dashed green

circles, are agents that were not infected by meeting with one of the untested asymptomatic

subjects, who are denoted by blue solid circles.

Let’s assume that subject A turns symptomatic in period t. The contact tracing technol-

ogy would allow health officials to trace the newly infected subjects C, D, and Z. However,

subjects B and E, who belong to the same infection chain originated by subject A, cannot be
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traced. It is important to note that subject Z does not belong to agent A’s infection chain as

subject Z was infected by subject V. However, subject Z has randomly met with subject A

in period t and is therefore traceable. If the comprehensive tracing technology is available,

then subject B can also be traced.

Let’s suppose that subject B turns symptomatic in period t while subject A is still

untested asymptomatic. The tracing technology would discover subject E. By allowing

subject B’s contacts to be traced in the earlier period t − 1, the comprehensive technology

allows health authorities to find out that subject A is an asymptomatic spreader. Since

subject A infected subject B, the detection of subject A is called backward tracing. The

contact tracing technology does not allow health authorities to trace backward as it takes at

least one period for newly infected subjects to become symptomatic.

It is important to note that the contact tracing technology can catch asymptomatic

agents who went untested in the previous periods only if these agents meet randomly with

a subject who turns symptomatic in the current period. These random meetings are fairly

rare, as we will show in Sections 3.1 and 4. In contrast, the comprehensive technology allows

the health authorities to leverage the infection chain of the newly symptomatic agents to

detect asymptomatic spreaders that were not caught in previous periods. An example is the

backward tracing of agent A when agent B turns symptomatic.

Health authorities could also launch a second round of tests by reconstructing the network

of contacts of those agents who tested positive in the first round. We deal with this extension

in Section 6.

Testing Probabilities The probability of catching a spreader depends on (i) the proba-

bility of tracing this subject; (ii) the tracing and testing capacity in period t, Υt, relative to

the number of people traceable Et; and (iii) the probability of a false negative (πF ). As we

will show, the efficiency of the tracing technology influences the probability of being traced

and the number of traceable subjects in a given period.

Formally, for a given efficiency of the tracing technology, the probability that a newly

infected subject infected (i = T ) or an untested asymptomatic subject (i = A) tests positive

in period t is

πi
P,t = πi

C,t · πT,t · (1− πF ) , i ∈ {T,A}, (21)

where the probability πi
C,t denotes the probability of being traced for a subject of type i and

the probability πT,t denotes the probability of being tested conditional on being traced by

the government. As we shall explain, this probability depends on the tracing and testing
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capacity Υt, and the number of agents that are traceable Et. This decomposition implies

that a subject has to be traced before being tested. The case in which all the traced subjects

are quarantined is discussed in Section 6.

The variable Υt should be interpreted broadly as the intensive margin of tracing and test-

ing as opposed to the extensive margin, which is determined by the efficiency of the tracing

technology. While the extensive margin affects the number of traceable agents (πT
C,t + πA

C,t),

the intensive margin, Υt, reflects the government’s capacity of to process all the necessary

information to test these traceable contacts and quarantine those who test positive. Hence-

forth, we will refer to Υt as testing capacity because this is how we will calibrate the model.

This choice reflects the absence of data regarding this broader concept of intensive margin

in tracing and testing.

Externality and the Collapse of the Testing System. The magnitude of the variable

Υt relative to the number of traceable people, Et, plays the role of a critical bottleneck that

can lead to the collapse of the tracing and testing system in our model. Agents fail to realize

that their consumption and labor decisions have externality on the number of traceable

subjects, Et, that health authorities will have to test a few periods later. This is because of

two reasons. First, those agents whose health status is unknown do not appreciate that as

they increase their consumption or labor, the overall amount of interactions in the economy

will increase and, thereby, newly symptomatic agents will end up having more traceable

contacts. Second, untested asymptomatic subjects fail to realize that as they consume or

work more, more people will become infected, raising the number of newly symptomatic

cases in every period.12 A larger number of newly symptomatic cases enlarges the pool of

subjects who met with them and are, therefore, traceable.

This externality may lead the number of traceable contacts Et to rise to the point at

which the testing system collapses, with very severe consequences for the economy. When

the number of traceable contacts largely exceeds the testing capacity, Υt, the probability for

traceable people to be tested, πT,t, falls and, with it, the probability for untested asymp-

tomatic subjects to test positive, πi
P,t, i ∈ {T,A} in equation (21). Consequently, the number

of asymptomatic spreaders starts increasing out of control and the spread of the virus accel-

erates. The economy contracts sharply as the heightened probability of becoming infected,

τt, causes non-quarantined agents to want to reduce economic interactions so as to minimize

the probability of catching the virus and dying.13

12This externality would not be eliminated if these subjects knew to be asymptomatic spreaders.
13There is another source of externality in the model. Agents do not internalize that their consumption

and labor decisions affect how many people will become infected in the economy as a whole and, hence,
ultimately their probability of getting infected. Eichenbaum et al. (2021) study the implications of this

16



Eichenbaum et al. (2021) consider the case in which individuals do not internalize the

limited availability of beds in hospitals when they decide how much to consume and work

(medical preparedness). While both that externality and the one studied in our paper

are about the existence of a bottleneck agents do not internalize, how these two types of

externality affect the economic and health outcomes of a pandemic is quite different. When

tests are running short, the efficacy of contact tracing falls, the effective reproduction number

of the virus soars, and the threshold of recovered agents needed to reach herd immunity

increases. As a result, the consumption loss and the number of deaths due to the pandemic

worsen considerably. In contrast, the medical-preparedness externality leads to a larger

consumption loss and a heavier death toll because the mortality rate sharply rises if there

are not enough beds in the hospitals to treat the symptomatic infected agents.

It is also important to note that putting in place a viable system of contact tracing is an

effective tool to address the medical-preparedness externality. As we shall show, when we

solve the optimal social distancing problem, the planner wants to scale up social distancing

measures to shore up the tracing and testing system so as to keep the number of infected

cases low. If we expanded the model to introduce medical preparedness, the planner would

still want to tighten social distancing in similar fashion to preserve the tracing and testing

system. If the planner did not do that, more subjects would become infected and more stress

would be put on the health system. An implication of this argument is that the externality

concerning medical preparedness becomes less relevant for policymakers when the externality

threatening the functionality of the tracing and testing system is properly addressed.

In the next section, we will characterize the probability of being traced and tested (πi
C,t

and πT,t) under the assumption that health authorities can trace only those contacts that

has occurred in the current week. We show how to obtain those probabilities for the case of

the comprehensive tracing technology in Appendix A.

3.1 The Probability of Being Traced

Contact tracing allows health authorities to trace only those contacts that occur in the

current week. It is useful to combine the binomial distributions in equation (1), (2), and (3)

to obtain the probability for an agent who does not know their health status to meet k-times

with the set of untested asymptomatic subjects while consuming, working, and performing

externality in great detail. In our model with contact tracing and testing, that externality does not play any
significant role.
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other activities:

ft(k) ≡
k∑

i=0

k−i∑
j=0

fc,t(i)fn,t(j)fo,t(k − i− j). (22)

Conditional on meeting k asymptomatic subjects in period t, the probability that at least

one of these subjects becomes symptomatic in the same period is 1− (1− πIS)
k. Hence, the

probability for a subject who does not know their health status to be traced in period t is

πS
C,t = πA

C,t = πUR
C,t =

φC(cst )+φN (ns
t )+φO∑

k=0

[
1− (1− πIS)

k
]
ft(k), (23)

implying that the probability of being traced is the same for the three unobserved types:

susceptible (S), untested asymptomatic (A), and unobserved recovered (UR). This is because

these agents consume and work the same amount as shown in Section 2.2. As a result, they

will have the same number of total interactions φC(c
s
t)+φN(n

s
t)+φO and the same probability

of meeting with k untested asymptomatic agents.

The probability πA
C,t in equation (23) is the sought probability for an untested asymp-

tomatic agent to be traced in period t.

We now work out the probability for a newly infected subject to be traced, πT
C,t. Newly

infected subjects are susceptible at the beginning of the period and become infected because

they have met an untested asymptomatic individual. Thus, we have to condition the prob-

ability distribution that a susceptible agent has met k untested asymptomatic subjects in

period t – ft(k) defined in equation (22)– on the fact that the newly infected agent has met

at least one untested asymptomatic subject, i.e., the agent who infected them. To do so, we

apply the Bayes theorem to obtain:

fT
t (k) =

ft(k)τ̃(k)

τt
, (24)

where τ̃(k) ≡
[
1− (1− τ)k

]
is the probability of getting at least one infectious contact out of

k interactions, and recall that τt stands for the average probability for susceptible subjects to

become infected in period t, which is defined in equation (5). Following the same reasoning

behind the probability in equation (23), we characterize the probability for a newly infected

individual to be traced as

πT
C,t =

φC(cst )+φN (ns
t )+φO∑

k=0

[
1− (1− πIS)

k
]
fT
t (k). (25)
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As noted at the beginning of this section where we analyzed Figure 1, an untested asymp-

tomatic subject can only be traced if they have met a newly symptomatic subject randomly.

The application of the Bayes theorem in equation (24) adjusts the probability distribution

fT
t (k) to factor in that the newly infected subject belongs to the infection chain of an agent

who was untested asymptomatic at the beginning of the period. This is important as this

untested asymptomatic agent may turn symptomatic with probability πIS. The event that

the subject who infected the newly infected agent turns symptomatic is more likely than

the joint event that an untested asymptomatic agent has randomly met another untested

asymptomatic agent (
∑

k>1 ft(k)) and the latter agent turns symptomatic. Therefore, an

untested asymptomatic agent is less likely to be traced than a newly infected agent under

the contact tracing technology (πT
C,t > πA

C,t).

In Appendix I, we show the unconditional and conditional distributions ft(k) and fT
t (k)

in one simulation where the contact tracing technology leads to successful control of the

pandemic. As one can see, the probability of catching an untested asymptomatic subject

is dwarfed by the fact that these subjects are very unlikely to meet randomly with other

untested asymptomatic agents, who can turn symptomatic. Conditioning on the fact that

newly infected agents have met at least one untested asymptomatic subject causes the mode

of the probability fT
t (k) to shift from k = 0 to k = 1, making tracing more likely. This result

underscores the importance of exploiting the existence of the infection chain to increase the

chance of detecting newly symptomatic agents.

3.2 The Conditional Probability of Being Traced

The contact tracing technology endows health authorities with the list of contacts of the

newly symptomatic agents in period t. Health authorities look at the contacts with individ-

uals whose health status is unknown (i.e., contacts with observed recovered individuals are

discarded). We call this set of traceable individuals the exposed. The measure of this set is

given by

Et = πS
C,t · St + πA

C,t · (1− πIS) I
A
t + πUR

C,t ·RU
t , (26)

where πS
C,t, π

A
C,t, and πUR

C,t are the probabilities of being traced for the three types of agents

who do not know their health status. These probabilities were defined in equation (23). We

adjusted the share of the untested asymptomatic subjects who were exposed by taking out

those who have revealed symptoms (πISI
A
t ) in period t.

Health authorities do not know the health status of susceptible, untested asymptomatic,

and unobserved recovered individuals and hence they cannot tell these three types of subjects
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apart when it comes to deciding who to test. Therefore, the probability of testing a traceable

contact does not depend on the contact’s health status and is then defined as

πt,T = min

(
1,

Υt

Et

)
, (27)

where recall Υt ≥ 0 denotes the testing capacity of policymakers in every period, which is

an exogenous variable. We substitute equations (25) and (27) into equation (21) to obtain

the probability of testing positive for newly infected subjects, πT
P,t. Substituting both the

probability πA
C,t of equation (23) and the conditional probability of being tested of equation

(27) into equation (21) allows us to pin down the probability of testing positive for subjects

infected in earlier periods, πA
P,t. The probabilities πA

P,t and πT
P,t, in turn, pin down the

dynamics of types in equations (B.11) and (19) for the contact tracing technology.

4 Model Solution and Calibration

We use the model to study the response of epidemiological and economic variables following

a surprise shock that initially infects a tiny share of the population. To this end, we solve the

model iteratively with a numerical root finder that computes the sequence of policy functions

and the evolution of the measure of agent types for a given number of periods. The com-

putation is performed for a given sequence of taxes and an initial amount of asymptomatic

and symptomatic agents infected by the shock. More details are in Appendix D.

The calibrated parameters of the model are summarized in Table 1. The economic

parameters are calibrated based on Eichenbaum et al. (2021). We set the weekly discount

factor to 0.961/52. This number is standard and implies the value of a statistical life of

roughly 10 million 2019 U.S. dollars, which is in line with what other studies assume (e.g.,

Eichenbaum et al. 2021). Productivity, A, is set to match a yearly income of $58,000. The

scale parameter of labor disutility, θ, is calibrated so that agents work on average 28 hours

per week. The Frisch labor elasticity φ is 0.5.

The epidemiological parameters are calibrated to the recent COVID-19 crisis in the US.

A key epidemiological parameter is τ , which is the probability that one interaction with an

infected subject results in an infection (see Assumption 4). We set this parameter to 5%

based on evidence from the World Health Organization (2020). The parameters φC , φN , φO

determine the number of interactions required to support levels of individual consumption

cst , labor ns
t , and other non-economic activities, respectively. The original step functions

φC(ct) and φN(nt) are shown in Appendix I. We set the parameters φC and φN so that

consumption- and labor-based transmissions of the virus account for a share of 1/3 each,
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Table 1: Calibration

Parameters Sign Value Target / Source

(a) Economic parameters

Discount factor β 0.961/52 Conventional discount factor
Labor disutility θ 0.13% Weekly working hours of 28
Productivity A 39.84 Yearly income 58,000$
Frisch labor elasticity φ 0.5 Literature

(b) Epidemiological parameters

Interaction via consumption φC 0.99% Consumption-based interactions 33%
Interaction via labor φN 0.39 Labor-based interactions 33%
Interaction independently φO 10 Basic reproduction number R0 = 2
Probability of infection τ 5% World Health Organization (2020)
Recovery rate πR 7/18 Average recovery rate = 18 days
Symptomatic rate πIS 7/18 Share of symptomatic cases = 50%
Mortality rate πD 0.6% Infection fatality rate = 0.3%
False negative outcome πF 0 False positive probability = 0
Quarantine policy µQ 1 Quarantine lowers C and L by 30%
Productivity symptomatic ϕ 0.8 Eichenbaum et al. (2021)
Social distancing effect on quarantine α 0 No impact besides quarantine
Initial infection ϵ 0.1% Infections March 16 2020

when consumption and labor decisions are fixed to the pre-pandemic level. These targets

are chosen consistently with the influenza study by Ferguson et al. (2006).

The parameter φO is set to target the basic reproduction number R0, which is the total

number of infections caused by one infected person (with measure zero) in their lifetime in a

population where everybody is susceptible and no containment measures (including testing)

are taken. We set the basic reproduction number to 2 in line with the evidence about the

early transmission of COVID-19 (e.g. Li et al., 2020; Zhang et al., 2020). The calibration

implies a total amount of 30 interactions in the pre-epidemic economy, which is broadly in

line with surveillance data from infected agents (Burke et al., 2020; Pung et al., 2020).

In line with evidence from the World Health Organization (2020), we choose that an agent

recovers on average after 18 days, which implies πR = 7/18. We calibrate the probability of

developing symptoms, πIS, so that 50% of infected agents develop symptoms at some point

of the pandemic crisis, which is in line with the symptomatic rate estimated by Baqaee et al.

(2020b).14 A key metric in parameterizing an SIR model is the infection fatality rate, which

14There is mixed evidence about this rate. Based on a population screening in Iceland, Gudbjartsson
et al. (2020) find that 57% of the tested-positive cases report symptoms. However, almost 30% of negatively
tested individuals also report symptoms in the same study. Poletti et al. (2021) find that 74% of tested-
positive contacts of indexed COVID-19 cases did not develop symptoms for individuals below 60 years of age.
Nishiura et al. (2020a) suggest a 69% infection rate based on flights of Japenese passengers data from China.
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measures the amount of deaths relative to all infectious cases. The mortality rate πD is the

infection fatality rate divided by the share of symptomatic agents. This rate is calibrated

to target an infection fatality rate of 0.3% based on Hortaçsu et al. (2021), who adjust the

fatility rate to take into account unreported infections.15

In the model, symptomatic agents are subject to a labor productivity penalty, ϕ. We

calibrate the penalty ϕ = 0.8 based on Eichenbaum et al. (2021). Furthermore, infected

symptomatic agents and tested-positive agents are quarantined, which is modeled as a tax

on consumption, µQ
c . This tax implies that at steady state the consumption and labor

of a tested-positive agent is lower than those of non-quarantined (non-recovered) agents by

approximately 30%. We assume that quarantined agents are not affected by social distancing,

that is α = 0. We set the probability of a false negative outcome πF to zero. The initial

share of infected agents ϵ is set to 0.1% and is divided evenly between asymptomatic and

symptomatic agents. Following Berger et al. (2022), this can be interpreted as the amount

of infections adjusted for unreported cases on March 16, 2020.

5 Quantitative Analysis of Contact Tracing

To better understand the results shown in this section, it is useful to define an epidemiological

variable that gauges the speed at which the virus is spreading: the effective reproduction

number. This number captures how many susceptible people an untested asymptomatic

agent infects on average during the spell of their illness.

The effective reproduction rate is affected by the efficiency of the tracing technology, the

testing capacity (Υt), the amount of economic interactions that depend on non-quarantined

agents’ decision to consume and work, and the stringency of the containment policies (e.g.,

social distancing) put in place by policymakers. An effective reproduction number above 1

indicates a situation in which the virus is infecting more and more people over time, while a

number below 1 signifies that the virus is retreating. The effective reproductive number in

our model is defined as

RE
t = (1− πT

P,t−1)
[
τt + (1− πIS − πR)

(
1− πA

P,t

)
τt+1+

(1− πIS − πR)
2
(
1− πA

P,t

)
(1− πA

P,t+1)τt+2 + . . .
]

= (1− πT
P,t−1)

∞∑
j=0

(
τt+j(1− πIS − πR)

jΠj
k=0

(
1− πA

P,t+k

))
. (28)

Based on a review of several epidemiological studies, Oran and Topol (2020) suggest an asymptomatic rate
between 40-45%, while Byambasuren et al. (2020) estimate a lower asymptomatic rate of 17%.

15This is line with Nishiura et al. (2020b). Fernández-Villaverde and Jones (2022) estimate a rate of 1%.
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The effective reproduction number conflates current and future probabilities for non-

quarantined infected agents to be caught. The efficiency of the tracing technology and

the testing capacity (Υt) mainly influence the effective reproduction number by affecting

the probability for newly infected subjects and for untested asymptomatic subjects to test

positive at the end of period t; that is, πT
P,t and πA

P,t, respectively. Social distancing lowers

the effective reproduction number primarily by reducing the infection rate, τt.

It is important to note that the reproduction number is more sensitive to changes in the

probability for a newly infected agent to test positive, πT
P,t−1, than to changes in the future

probability for an untested asymptomatic agent to test positive, πA
P,t+k. The reason is that

asymptomatic agents may turn symptomatic or recover in every future period and, when

they do, they will stop infecting other people. The transitory nature of being asymptomatic,

which is captured by the term (1 − πIS − πR) in equation (28), implies that increasing the

probability of catching asymptomatic agents further in the future has decreasing effects on

the effective reproduction number. Detecting newly infected agents (i.e., increasing πT
P,t) has

the largest (negative) impact on the effective reproduction number because these subjects

are quarantined before having the time to infect anyone else. This is an important point

that helps explain some of the results shown in this section.

5.1 Contact Tracing with Unlimited Testing Capacity

It is interesting to start with a scenario in which tests are always sufficient to cover all the

contacts of newly symptomatic subjects. This scenario sheds light on the efficacy of contact

tracing technologies in the most favorable environment where policymakers do not face any

bottleneck when tracing and testing people. In addition, this exercise will give us a sense of

how many tests would be needed to make contact tracing work best.

In this scenario, we also consider random testing as an alternative to contact tracing,

which has been advocated by Romer (2020) among other scholars.16 It is assumed that

random testing is run on a weekly testing capacity of 10% of the initial population over the

entire simulation horizon. This implies a daily testing capacity of close to 5 million tests.

To put this number in perspective, 1 million tests were administered per day in September

2020 in the U.S. We also consider the case in which no testing is performed.

Figure 2 shows the evolution of the key epidemiological, economic, and testing variables.

Beginning with the case in which no one is tested (the green dashed-dotted line), the pan-

demic spreads very fast and causes many people to become infected. The pandemic crisis

fades away when 60% of the population becomes infected and herd immunity is reached.

16The formalization of random testing in our model is explained in Appendix C.
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Figure 2: Comparison of different testing strategies with unconstrained number of tests for
contact tracing and comprehensive contact tracing. The amount of tests used in
random testing is 10% of the entire population each week.
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In total 0.4% of the population dies because of the pandemic. In response to the surge in

the probability of getting infected, agents reduce their interactions by drastically lowering

consumption and labor. As a consequence, the economy goes through an extreme recession,

with aggregate consumption contracting by up to 50%.

The introduction of the contact tracing technology hugely improves outcomes by slowing

down the spread of the virus and reducing the death toll by more than 50%. See the solid

blue line in Figure 2. As the virus spreads less quickly (lower effective reproduction number),

the chances of getting infected are reduced, leading agents to lower their consumption and

labor less dramatically compared to the case of no testing. The reproduction number quickly

drops and eventually falls below 1. As a result, herd immunity is reached with around 20% of

infected agents –three times less than the share of infected needed in the case of no testing.

The comprehensive contact tracing technology, which allows tracing of contacts up to one

week back, (the red dashed line in Figure 2) further mitigates the severe consequences of the

pandemic crisis.17 However, the improvement is only marginal relative to what is already

achieved by the contact tracing technology. Both tracing technologies require testing at

most 4% of the population in a week, which is substantially less than the number of tests

we assume for random testing. The timing of the testing varies somewhat across these two

tracing technologies. The contact tracing technology requires more tests to be performed a

few periods after the pandemic has started (around period 30) relative to the comprehensive

one.

While this result may seem odd at first, it is important to recall that the contact tracing

technology is less effective than the comprehensive technology in detecting untested asymp-

tomatic subjects. The contact tracing technology can only trace these subjects through

random meetings. As explained in Section 3.1, these types of meetings are quite rare.18 As

a result, in the lower right panel of Figure 2, the share of untested asymptomatic subjects

detected by the contact tracing technology is very low compared to the levels attained by

the comprehensive technology. Thus, the effective reproduction number is initially higher in

the case of the contact tracing technology, which justifies a faster increase in the number of

traceable subjects, Et, and hence more tests performed a few periods after the pandemic has

started (around period 30). In short, under the contact technology, you trace and test fewer

people at the onset of the pandemic and this requires you to test more people later on.

Even though random testing (the black dotted line in Figure 2) is assumed to have an

implausibly large testing capacity, it proves to be fairly ineffective in mitigating the outcomes

17The formal derivation of comprehensive contact tracing is explained in Appendix A.
18The probabilities of these random meetings in period t = 20 and in period t = 40, when the pandemic

picks up a little, are shown in the left plot of Figure I.2 of Appendix I.
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of the pandemic. Even if 5 million people could be randomly tested every day, the pandemic

would lead to a severe contraction and would kill 0.35% of the entire population –more than

twice as many deaths as under contact tracing.

What explains the spectacular failure of random testing? To answer this question,

one should look at the two bottom graphs of Figure 2, which show the share of newly infected

asymptomatic subjects (left plot) and the share of untested asymptomatic subjects (right

plot) who are detected and quarantined in every period under random testing and under the

two tracing technologies. Even though many more tests are performed, random testing can

detect only around 10% of the newly infected subjects in every period. Random testing is

rather effective in capturing untested asymptomatic subjects. Even so, random testing fails

to reduce the effective reproduction number, underscoring the importance of detecting and

quarantining the newly infected cases to attain a successful containment of the virus. This

last intuition is reinforced by observing that even though the contact tracing technology

largely fails to detect untested asymptomatic subjects, it fares relatively well in containing

the economic costs and mortality of the pandemic.

That the probability of catching the newly infected asymptomatic subjects turns out to

be key to controlling the pandemic should not come as a surprise. We already noted that the

reproduction number defined in equation (28) is more sensitive to changes in the probability

for newly infected agents to test positive, πT
P,t, than to changes in the probability for untested

asymptomatic subjects to test positive, πA
P,t.

Why is contact tracing so successful? By leveraging the information contained in the

reconstructed infection chains, contact tracing allows policymakers to break the positive

relation between the probability of detecting newly infected agents (πT
P,t) and the infection

rate τt. In doing so, contact tracing resolves an important challenge faced by random testing:

at the beginning of a pandemic – when the infection rate τt is low – infected agents who can

spread the virus are only a few and are therefore hard to detect. As explained before, the

ability of detecting and quarantining newly infected agents has a large effect on reducing

the effective reproduction number, allowing contact tracing to nip the pandemic in the

bud. Hence, social distancing is not required to quash a surge in the number of infections.

Rather, these measures are only adopted if needed to address the externality associated with

consumption and labor. The challenges posed by this externality are shown in the next

section where we impose an upper bound on the number of tests that can be performed in

every period.
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5.2 Contact Tracing with Limited Testing Capacity

In the previous section, we showed that the contract tracing technology does a great job in

controlling the spread of the virus. The comprehensive tracing technology improves outcomes

only marginally. In this section, we show that this is not the case when the testing capacity,

Υt, is calibrated to the amount of tests performed in the U.S. from March 16, 2020, through

October 4, 2020. The U.S. health authorities had a daily capacity of only 30,000 tests

available at the onset of the pandemic crisis. This capacity then increased linearly up to 1

million tests 28 weeks later.19 Afterwards, the testing capacity is assumed to increase at a

steady pace until week 52, after which it stays put.

Looking at the third left plot in Figure 3, the contact tracing technology (blue solid

line) requires testing to accelerate after period 30 to compensate for its inability to catch

untested asymptomatic subjects, as reflected in the low value of πA
P,t in the lower right

plot of the figure. However, the testing capacity is not growing fast enough and the blue

solid line hits the yellow starred line, denoting the U.S. testing scale (Υt). As the testing

capacity becomes binding, the testing system collapses, as captured by the rapid drop in the

probability of catching a newly infected subject (πT
P,t). As a result, the effective reproduction

number increases and agents cut their consumption and labor in response to the higher risk

of getting infected.

The comprehensive tracing technology (the red dashed line in Figure 3) delivers the best

outcome among the considered alternative strategies. This better tracing technology allows

health authorities to detect and isolate roughly 20% of untested asymptomatic agents in every

period via backward tracing (see the bottom right graph). In doing so, this technology keeps

the path of exposed subjects lower, reducing the number of tests required. Consequently, the

number of tests performed does not accelerate after period 30 as in the case of the contact

tracing technology. As a result, under the comprehensive tracing technology, the number of

required tests does not become constrained by the limited testing capacity Υt so early and

the testing system remains viable.20

19The US conducted 231,081 tests between 16 and 22 of March, which is approximately 33,000 daily
tests. Between 28 September and 4 October, the U.S. conducted 6,936,961 tests, which corresponds to
approximately 991,000 daily tests.

20Nevertheless, the testing availability becomes binding later on, lowering the probability of testing asymp-
tomatic subjects, πA

t , somewhat in subsequent periods. Because of the pecking order (explained in Appendix
A), there is no effect on the probability of detecting newly infected agents, πT

t , which, as we have already
pointed out, is essential for successful management of the pandemic. Thus, the effective reproduction number
hardly budges and the effects on consumption and mortality are only moderate.
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Figure 3: Comparison of different testing strategies with limited testing capacity: Contact
tracing (blue solid line), contact tracing combined with social distancing for 30
periods (green dash-dotted line), and comprehensive tracing (red dashed line).
In the sixth plot, the yellow starred line shows the testing capacity Υt.
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Table 2: Welfare, economic, and health outcomes of various containment policies

Welfare Consumption Mortality Recovered Social Costs
CE %a %b %c %d trillion $e

Contact tracing with limited testing capacity

No social distancing −2.07 −3.22 0.30 39 9.67
Optimal social distancing (short) −1.06 −2.55 0.17 22 4.93
Optimal social distancing (long) −0.92 −6.56 0.12 16 4.28
Tighter quarantine −1.06 −1.92 0.17 22 4.94

Alternative contact tracing scenarios

Unlimited testing capacity −1.05 −1.89 0.17 22 4.91
Comprehensive tracing −0.74 −1.38 0.12 15 3.44
All exposed contacts quarantined −1.40 −2.95 0.21 28 6.51

No contact tracing

No testing −2.93 −4.25 0.41 54 13.64
No testing + optimal social distancing −2.87 −6.76 0.39 51 13.39
Random testing −2.40 −3.67 0.35 45 11.18

a Welfare gain/loss expressed as consumption equivalent relative to a non-pandemic economy.
b Cumulated consumption loss at the end of the pandemic relative to a non-pandemic economy.
c Cumulated mortality rate at the end of the pandemic.
d Fraction of recovered agents at the end of the pandemic.
e Social costs in trillion $ relative to a non-pandemic economy.

5.3 Complementarity with Other Containment Policies

In Section 5.1, we showed that a well-functioning contact tracing and testing system allows

policymakers to reduce both the consumption loss and the death toll of a pandemic. However,

actual implementation of contact tracing turned out to be very challenging for a variety of

reasons in many countries across the world. In the previous section, we showed that one

reason that can impair the correct functioning of contact tracing is the scarcity of tests,

which can be more broadly interpreted as the inability of coordinating tracing and tests

when the number of traced close contacts grows too large. In this section, we study how to

remedy this situation that leads contact tracing to fail.

To this end, we now consider three containment policies that the government can deploy

to shore up a tracing system at risk of collapse. The first policy is social distancing, the

second one is a tighter quarantine, and the third one is to randomly allocate the excess

testing capacity in the early stages of the pandemic.
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Table 2 summarizes the outcomes of these three cases and compares them with those

studied in the earlier sections. The case of “All exposed quarantined” will be explained in

Section 5.4 and will be used to isolate the social value of testing. The table shows the welfare

losses expressed as consumption equivalents relative to the non-pandemic economy. It also

shows the average consumption loss over the entire considered horizon of 250 periods relative

to the non-pandemic economy, the cumulative mortality rate and the recovery rate at the

end of the pandemic. The social costs of the different scenarios are expressed in trillions of

dollars. Appendix F shows the derivation of consumption equivalents and the social costs.

Before evaluating the three cases, it is important to notice that, in the idyllic case of

unlimited testing capacity (no externality), contact tracing reduces the share of recovered

agents needed to reach herd immunity by 32 percentage points. Compare the column report-

ing the cumulative percentage of fully recovered agents at the end of the pandemic in the

case of Unlimited testing capacity (under Alternative contact tracing scenarios) with the No

testing (under No contact tracing scenarios) in Table 2. This result arises because tracing

and testing permanently lower the effective reproduction number of the virus – as shown in

Section 5.1 – decreasing the threshold of recovered people needed to attain herd immunity.

Now we turn to the less idyllic case in which contact tracing is threatened by an external-

ity due to limited testing capacity. In this context, we will show how alternative containment

policies can be combined with contact tracing to deliver welfare, economic, and health out-

comes that are remarkably similar to those obtained under the idyllic case of unlimited

testing capacity (no externality) threatening the implementation of tracing and testing.

Optimal social distancing. We solve for the optimal path of the consumption tax rate

µS
c,t. As standard in this literature, the planner sets the consumption tax to maximize the

welfare of the economy at the beginning of the pandemic. Appendix F describes the welfare

criteria and the Ramsey problem in detail. For a reason that will be clarified below, we

consider two scenarios: The government can either commit its social distancing policy over

a period of either 30 weeks (labelled Optimal social distancing (short) in Table 2) or 150

weeks (labelled Optimal social distancing (long) in the table). The green dashed-dotted line

in Figure 3 shows the dynamics of the macro and epidemiological variables under the optimal

short social distancing policy.

As shown in Figure 3, when we solve for the optimal path of consumption tax rates over

the first 30 periods, the collapse of the tracing and testing system is averted by implementing

social distancing before the testing capacity would become binding. See the tax increases

over the 30 periods aimed to curtail the amount of consumption and labor interactions. By

lowering the amount of economic interactions early on, social distancing reduces the number
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of tests required, preventing the testing capacity from becoming binding later on. As a

result, the effective reproduction of the virus is successfully reduced, allowing the economy

to reach herd immunity with fewer cases. To see this, compare the cumulative number of

recovered under the case of limited testing capacity, in which the tracing and testing system

collapses, to that under the case of limited testing capacity plus the optimal (short) social

distancing in Table 2 (the fourth column).

Remarkably, the optimal short social distancing policy leads to a cumulative mortality

rate and welfare gains that are very similar to those achieved under no constraint on testing

(unlimited testing in Table 2), where, by construction, no externality threatens the function-

ing of contact tracing. As shown in Figure 3, the lower aggregate consumption path at the

beginning due to the tightening of social distancing is more than compensated by a higher

consumption level throughout the pandemic, relative to the case in which the tracing and

testing system collapses – the blue solid line.

How can the government avert the collapse of the tracing and testing system? This is

shown in Figure 4, in which the optimal tax rate from the Ramsey problem is displayed.

Under both time horizons considered (blue solid and dashed lines), the optimizing tax rate

is increased in the run-up to period 37 when the system would have collapsed in the absence

of this measure. Yet, if we assume unlimited testing capacity (the red solid and dashed

lines), the externality studied in this paper does not arise, the tracing and testing system

does not collapse, and the optimal tax rate is not characterized by any increase from period

30 through period 37.

Why is the optimal tax rate increased a second time when we consider a longer com-

mitment period (the solid lines in Figure 4)? The optimal consumption path is raised to

sufficiently slow down the spreading of the virus to attain herd immunity gradually over

time. This result is not new, and Eichenbaum, Rebelo, and Trabandt (2021) have explained

it thoroughly.21 If one compares the consumption loss and the mortality rate in the case of

limited testing capacity and short social distancing with those in the case of limited testing

capacity and long social distancing in Table 2, one can see that the second tax hike leads to

a quite dramatic contraction in consumption to push the death toll down only a bit. This

result is in line with other studies that calibrate the costs of a statistical life similarly to the

way we do in our paper.

Importantly, while, of course, social welfare increases relative to the case of the short

social distancing policy, much of the welfare gains are reaped in the short run. To see

21The second tax hike needed to address the externality related to achieving herd immunity is much larger
than the first hike intended to address the externality studied in our paper. This relatively large tax hike
is due to the quite large value the literature typically attributes to a human life in the calibration. The
magnitude of the first tax hike primarily depends on how many tests are available.
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Figure 4: Optimal social distancing – the planner’s optimal path of consumption tax rates
is shown for different scenarios in an economy with contact tracing. The test
availability is either limited (blue lines) or unlimited (red lines). We consider
two horizons over which the government can commit to maneuver the tax rate: a
long horizon of 150 periods (solid lines – long social distancing) or a short horizon
of 30 periods (dashed lines – short social distancing).

this, compare the first column of Table 2 for the cases No social distancing, Optimal social

distancing (short), and Optimal social distancing (long) under the first of the three scenarios

considered in that table (“Contact tracing with limited testing capacity”). This finding

highlights the importance of the type of externality studied in this paper.

To sum up, we showed that (i) a combination of mitigation policies (in this case contact

tracing and testing + social distancing) is welfare improving; (ii) it is optimal for the gov-

ernment to use mitigation policies to lower social interactions right before tests are running

short; (iii) most of the welfare gains are reaped by only correcting the externality studied in

our paper – i.e., by implementing the short optimal social distancing policy. Welfare gains

from addressing the other externality in the model are relatively small.

Tighter quarantine policy and limited testing capacity. To keep the tracing and

testing system afloat when tests are running short, policymakers decide to quarantine all

the agents for whom no test is available because the testing capacity constraint is binding.
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When the testing capacity constraint is not binding, policymakers quarantine only subjects

who test positive, exactly as in the baseline case. For computational reasons, we assume

that the duration of the quarantine for the untested agents is stochastic. Agents who were

tested before being quarantined leave the quarantine when they test negative, as assumed

in the baseline case. The outcomes of this mix of policies is shown in Table 2 as “Tighter

quarantine.”

The more aggressive quarantine policy leads to welfare, economic, and health outcomes

that are remarkably similar to the case of unlimited testing capacity and to the case of

(short) optimal social distancing policy under limited testing capacity. The reason is that by

quarantining more people, policymakers avert the collapse of contact tracing. Nevertheless,

outcomes are slightly worse than those under unlimited testing capacity because the lack

of tests prevents policymakers from knowing the true health status of those agents who are

quarantined under the tighter quarantine regime. As a consequence, some subjects who leave

quarantine are still asymptomatic and able to infect others. As a result, consumption falls

and mortality drops. Furthermore, consumption falls because more agents are quarantined

and quarantined agents consume less. However, these effects on consumption are rather

small quantitatively, as shown in Table 2. Indeed, the tighter quarantine policy leads to a

better consumption outcome than the optimal short social distancing policy, which, to be

effective, has to lower the consumption path considerably in the early stages of the pandemic

as shown in Figure 3.

Random testing in combination with contact tracing. When random testing is com-

bined with contact tracing, the marginal contribution of allocating tests randomly is negli-

gible. We combine these two testing strategies by assuming that when the testing capacity

exceeds the number of traced subjects to be tested, this excess of tests is allocated randomly

across the population. The negligible marginal contribution of random testing is due to the

inability of this testing strategy to significantly lower the effective reproduction number be-

yond what contact tracing already achieves. This failure is largely due to the low probability

that asymptomatic spreaders can be detected through their random meetings with newly

symptomatic cases, as explained in Section 5.1 and shown graphically in Appendix I. More

details on the random testing in combination with contact tracing are shown in Appendix

C.

We conclude that both optimal social distancing and a tighter quarantine policy are suit-

able tools to preserve the viability of the tracing and testing system while random testing is

not. In fact, when the government has a limited ability to commit to optimal social distanc-

ing (short social distancing), the welfare implications of the two approaches are virtually
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identical, as shown in Table 2. Even when the government has the ability to commit for

a longer period of time, optimal social distancing policy leads to a quite small increase in

social welfare. And this slightly higher level of welfare can be achieved by sacrificing much

more consumption than what the tighter quarantine policy requires. This result highlights

the critical difference between the two approaches: Social distancing is a very potent pool

that allows policymakers to save lives by freezing the economy. The tighter quarantine is less

costly in terms of consumption, since it is a measure applied to only a subset of subjects (the

quarantined ones). Nevertheless, a tighter quarantine policy when the testing constraint is

binding cannot completely eliminate the risk that some asymptomatic spreaders leave quar-

antine before they have recovered. As a result, the risk for susceptible agents to become

infected is higher. These two effects on welfare turn out to cancel each other out.

5.4 The Value of Tracing and Testing

We now want to use our model to study the social value of contact tracing and testing. To

this end, we compare the case of unlimited testing capacity plus contact tracing to the case

of no tracing and testing in Table 2. This comparison shows that testing and tracing more

than halve the consumption loss due the pandemic and the mortality rate. According to

our model, the social welfare gains from running a viable tracing and testing system are

of the order of $8.7 trillion (see the column in the far right). This result underscores the

importance of preserving the viability of the tracing and testing system.

Let us now focus on the gains from testing alone (conditional on being able to trace

the close contacts of confirmed cases in the current week). For this, we need to construct

a counterfactual case in which there is no test and hence policymakers have to quarantine

all the close contacts traced every week.22 Note that without testing, lots of susceptible

subjects will be quarantined and since tests are not available, some infected agents may leave

quarantine still being asymptomatic and infect more susceptible subjects. Furthermore, in

the absence of testing, subjects who did not develop symptoms during quarantine do not

know their health status. This lack of information lowers social welfare. The case of no

testing is called All exposed contacts quarantined in Table 2. If one compares this case with

that of unconstrained testing capacity, which corresponds to the case of unlimited testing

capacity, the value of having enough tests to check the health status of all the traced contacts

is valued by the model to be equal to $1.6 trillion.

Furthermore, we show that being able to trace contacts for one additional week (compre-

hensive contact tracing) will further lower the mortality rate (−0.05 percentage points) and

22For computational reasons, we assume that quarantine has a stochastic duration in the absence of tests.
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the consumption loss (−.051 percentage points). The value of a more comprehensive tracing

system is roughly $1.5 trillion.

6 Extensions

Our objective was to construct a macro-epidemiological model to serve as a general frame-

work to study the efficacy (or lack thereof) of contact tracing and testing. With this goal in

mind, we tried to keep the model as clean as possible. That said, our model can be extended

in a number of interesting directions. We consider four extensions that can be studied by

tweaking our methodology.

Superspreaders. An interesting extension is to consider the case of superspreaders – a

small number of carriers ending up infecting many individuals. Superspreading may be linked

to subjects who particularly enjoy social activities or have jobs that expose them to a large

number of people every day. It may also be linked to large gatherings. Since superspreaders

seem to have played a key role in spreading the coronavirus, we could introduce a new

type of agents, who either enjoy consumption more or draw less disutility from working

than the other set of agents. The presence of superspreader agents would make contact

tracing even more effective than random testing. As one of these superspreaders starts

showing symptoms, policymakers can detect an outsized number of newly infected agents

from tracing the contacts of the superspreader. This is because superspreaders’ infection

chain is larger than that of normal spreaders.23 Our methodology is general and can be

applied to models featuring households or firms heterogeneity.

Multiple Rounds of Tracing and Testing. We assumed that health officials cannot

perform multiple rounds of testing (i.e., testing the contacts of those who tested positive

in the previous round). While our methodology can be extended to model multiple rounds

of contact tracing and testing, considering this extension in the paper would not change

our main conclusions. With the contact tracing technology, multiple rounds of testing can

provide only a minimal contribution because for the most part, policymakers can catch newly

infected subjects who did not have time to infect anyone else. With the comprehensive

tracing technology, policymakers can catch untested asymptomatic agents who had time to

infect someone else in the previous period. However, as shown in Section 4, implementing

23If policymakers can observe if an agent is a superspreader, they should first try to trace and test the
superspreaders. This strategy would obviously make contact tracing even more effective.
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this technology already attains a close-to-optimal control of the virus. Hence, any gain from

performing additional rounds of tracing and testing can only be incremental.

Mask-Wearing Mandate to Rescue Contact Tracing. At the end of the previous

section, we studied how optimal social distancing and a more stringent quarantine policy

may prevent the tracing and testing from collapsing. We now discuss whether a very pop-

ular containment measure to combat the spread of the virus –introducing a mask-wearing

mandate – could also be an effective tool to avert the collapse of the tracing system.24

In our framework, a more stringent mask-wearing mandate can be modeled by reducing

the probability for agents to get infected conditional on meeting an asymptomatic spreader,

τ . Broadening the set of activities for which wearing masks is mandatory tends to increase

social interactions because agents now feel safer and understand that they are less likely to

get infected at any interaction. While a lower risk for agents to catch the virus obviously

improves the economic and health outcomes of a pandemic, by spurring social interactions a

mandatory mask mandate can –all else being equal– increase the number of agents exposed to

confirmed cases, requiring more tests to be administered. So a more stringent mask mandate

may even add strain to the tracing system in the short run. In this light, this containment

measure seems to be less complementary to contact tracing than those studied in Section

5.3. Appendix G provides more details.

Furlough Schemes. Sending agents into quarantine helps contain the health losses, but

also imposes economic losses on the quarantined agents. A furlough scheme, which is modeled

as a reduction in the quarantine tax µQ, might help to contain the economic losses for

quarantined agents. However, we find that the social welfare gains of a furlough scheme for

a well-functioning contact tracing technology are rather low. The reason is that the fraction

of quarantined agents is small (insofar as the contact tracing is not collapsing.) However,

the potential gains of introducing a furlough scheme are much larger when the government

decides to quarantine a large number of agents, e.g., every traced contact regardless of their

test outcome. As a consequence, the importance of introducing a furlough scheme depends

on the stringency of the quarantine policy. Our analysis suggests that a very well targeted

quarantining approach considerably reduces the necessity of a furlough scheme. Appendix

G contains the details and related simulations.

24A formal cost and benefit analysis of this matter is very challenging because it requires taking a stand
on agents’ disutility of wearing masks, which is not well understood.

36



7 Concluding Remarks

We study contact tracing in a macro-epidemiological model in which some of the infected

agents remain asymptomatic for a number of periods, during which they contribute to spread-

ing the virus. In the model, agents’ consumption and labor decisions have externality on

the number of subjects that will need to be traced and tested. This externality can threaten

the correct functioning of contact tracing. Timely-deployed containment policies – social

distancing or tightening quarantine policies – may correct this externality, allowing policy-

makers to move beyond the traditional pandemic trade-off between saving human lives and

mitigating the economic costs of pandemics. Indeed, we showed that the complementarity

between contact tracing and these containment policies is so strong that policymakers can

achieve welfare, consumption, and health outcomes that are remarkably similar to the idyllic

case in which no externality threatens the implementation of contact tracing.
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A Comprehensive Contact Tracing Technology

With the comprehensive contact tracing technology, the government can also trace the con-

tacts that occurred in period t− 1 with subjects who become newly symptomatic in period

t. The objective of this section is to characterize the probabilities for newly infected and

untested asymptomatic subjects to be traced based on contacts established in period t− 1.

The probability for these two subjects to be traced based on the contacts they had in period

t is identical to the ones derived before under the contact tracing technology.

To derive these probabilities, it is useful to condition to three types of agents and to two

types of links. The three types are as follows: (i) Type-A agents are asymptomatic subjects

in period t infected earlier than t−1; (ii) Type-T agents are asymptomatic subjects in period

t who became newly infected in period t− 1; and (iii) and Type-S agents are subjects who

became newly infected in period t. These letters are chosen to denote the health status of

asymptomatic subject in period t − 1: A for untested asymptomatic, T for newly infected,

and S for susceptible. Note that the Type-A and Type-T agents have not tested positive, or

recovered, or developed symptoms before testing is performed in period t.

The two links are as follows: (i) A-links stand for those contacts that the three types of

subjects had in period t − 1 with agents who became infected before period t − 1; (ii) and

T-links mean those contacts that the three subjects had in period t − 1 with agents that

become infected in period t− 1. These letters denote the health status of the subjects with

which the three types of agents have interacted in period t−1: A for untested asymptomatic

and T for newly infected. We care about these two types of links because they connect the

three types of subjects to those agents who may become symptomatic in period t.25

Type-A agents: asymptomatic subjects in period t who were infected earlier

than t-1. Since Type-A subjects were already asymptomatic in period t−1, they may have

infected susceptible individuals in period t−1 and these individuals may become symptomatic

in period t. Creating their own infection chain raises the probability for Type-A agents to

be traced. Indeed, these additional traceable links create the possibility of backward tracing,

25Recall that it takes at least one period for newly infected agents to develop symptoms. Thus, the
probability of meeting in period t−1 with subjects who will then become newly infected in period t (Type-S
link) does not affect the probability of being traced in period t.
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which was illustrated in the graphical example of Figure 1. The probability for a Type-A

subject to have k T-type links in period t− 1 can be written as the sum of binomials

fA,T
t−1 (k) ≡

k∑
i=0

k−i∑
j=0

fA,T
c,t−1(i)f

A,T
n,t−1(j)f

A,T
o,t−1(k − i− j), (A.1)

where the first superscript of the probability distribution f denotes the agent’s type – in

this case A – and the second superscript denotes the links’ type – in this case T-links. The

distributions on the right-hand-side are binomial distributions which are defined as follows:

fA,T
c,t−1(k) ≡ B

(
k, φc

(
cst−1

)
,
[τ + (1− τ)τt−1]C

S
t−1

Ct−1

)
, (A.2)

where the distribution regarding labor-based interactions, fA,T
n,t−1, and that regarding non-

economic interactions, fA,T
o,t−1, are analogously defined.

The probability [τ + (1− τ)τt−1]
CS

t

Ct
can be decomposed into two parts. The first part

τ
CS

t

Ct
captures the chance for the Type-A agent to meet with a susceptible individual and to

infect them. In this case, the asymptomatic subject has added one more case to their own

infection link which could potentially make them traceable via backward tracing.26 In the

example illustrated in Figure 1, this first case corresponds to the infectious meeting between

subject A and subject B.

The second part is the product of the probability of not infecting the susceptible subject

(1− τ) times the probability that some other asymptomatic agents will infect the subject in

period t − 1 (i.e., the average probability τt−1). Note that in this second case, the Type-A

agent has a random, non-infectious meeting with an agent that will be infected by someone

else. This random, non-infectious meeting creates a traceable link for the Type-A agent in

period t even though this meeting does not belong to Type-A agent’s infection chain. In the

example illustrated in Figure 1, this second case corresponds to the meeting between subject

A and subject I in period t − 1. This meeting is not infectious as subject I is infected by

subject N in the same period.

While both events create a T-link for the A-type agent, in the first case only one event has

to happen (the Type-A agent infects the susceptible subject), whereas in the second case two

events have to jointly happen (the Type-A agent does not infect the susceptible individual

and the susceptible individual becomes infected by meeting another agent). Thus, the first

event is generally more likely than the second chain of events. In our empirical simulation,

26The probability τ is the probability of infecting the subject conditional on meeting a susceptible subject.
See Assumption 4.
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backward tracing considerably raises the probability for a Type-A agent to be traced, while

the probability for a Type-A agent to be traced via a random, non-infectious meeting with

an agent that will later become symptomatic is quite tiny.

Untested asymptomatic subjects in the periods earlier than t − 1 have the following

probability to have met k-times with other asymptomatic subjects who got infected in periods

earlier than t− 1:

fA,A
t−1 (k) ≡

k∑
i=0

k−i∑
j=0

B
(
i, φC(c

s
t−1),

CA
t−1

Ct−1

)
B
(
j, φN(n

s
t−1),

NA
t−1

Nt−1

)
B
(
k − i− j, φO,

IAt−1

Popt−1

)
.

(A.3)

Since A-links involve subjects who are already infected, all meetings are random (i.e., non-

infectious).

Type-T agents: asymptomatic subjects in period t who were infected in period

t-1. The probability for Type-T agents to have k T-links in period t− 1 is

fT,T
t−1 (k) ≡

k∑
i=0

k−i∑
j=0

B
(
i, φC(c

s
t−1),

cst−1Tt−1

Ct−1

)
B
(
j, φN(n

s
t−1),

ns
t−1Tt−1

Nt−1

)
(A.4)

× B
(
k − i− j, φO,

Tt−1

Popt−1

)
,

where cst−1Tt−1 and ns
t−1Nt−1 denote the total consumption and labor of the newly infected

subjects in period t− 1.

The probability for Type-T agents to have k A-links can be constructed from the prob-

ability for Type-A agents to have k A-links, fA,A
t−1 in equation (A.3), by applying the Bayes

theorem

fT,A
t−1 (k) =

fA,A
t−1 (k) τ̃(k)

τt−1

, (A.5)

where the variable τ̃(k) is defined in equation (24) and the rate τt is the average infection rate

defined in equation (5). Correcting the distribution fA,A
t−1 is needed because, unlike Type-A

agents, Type-T agents must have met at least one untested asymptomatic in period t − 1;

i.e., the individual who has infected the Type-T agent.

Analogously to the distribution in equation (24), applying the Bayes theorem adjusts the

distribution fA,A
t−1 , which only reflects random meetings, to factor in that every Type-T agent

belongs to the infection chain of an agent who was untested symptomatic in period t− 1.
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Type-S agents: newly infected subjects in period t. Since, unlike Type-A agents,

who can expand their own infection chain in period t−1, Type-S and Type-T agents cannot

infect anyone in that period, they will have the same probability to have k T-links in period

t− 1: fS,T
t−1 = fT,T

t−1 .

The probability for Type-S agents to have k A-links in period t − 1 can be constructed

starting from the probability for Type-A agents to have k A-links in the same period. How-

ever, we need to take into account that for Type-S agents, none of these meetings with

untested asymptomatic subjects triggered an infection. For this, we use again the Bayes

theorem

fS,A
t−1 (k) =

fA,A
t−1 (k) (1− τ̃(k))

1− τt−1

. (A.6)

Time Adjustments and Active Links. Since tracing is conducted in period t, the

probability distributions for Type-A and Type-T subjects have to be conditioned on the event

that these subjects have remained untested asymptomatic through period t. Furthermore,

some of the A-links are not relevant for traceability and testing in period t because infected

asymptomatic subjects may become symptomatic or recover or test positive in period t− 1.

T-links could also become non-relevant for traceability and testing in period t because some

of the newly infected agents test positive at the end of period t−1. Therefore, it is convenient

to distinguish between total links (or simply links) and active links, which are those links with

infected people who may still reveal symptoms in period t, making the subjects traceable in

that period.

We show how to condition the six probability distributions, f l,i
t−1, with i ∈ {A, T, S} l ∈

{A, T} on these two events in Appendix A.1. These adjustments lead to the probability of

being traced in period t for Type-A, Type-T, and Type-S agents because of the contacts

they established in period t − 1. We denote these probabilities by π1,i
C,t, with i ∈ {A, T, S}.

Notationally, these probabilities have the subscript t to remind that tracing is carried out in

period t. The probabilities of being traced for an asymptomatic agent or a newly infected

agent through their contacts established in the current week t are denoted by π0,i
C,t, with

i ∈ {A, T} and are the same as πi
C,t, with i ∈ {A, T}, derived in Section 3.1.

Probability of Testing Positive under the Comprehensive Tracing Technology.

We use the decomposition in equation (21) to define the probability of being tested positive
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at time t through contacts established in the previous period27

πj,i
P,t = πj,i

C,t · π
j
t,T · (1− πF ), i ∈ {A, T, S} j ∈ {0, 1}, (A.7)

where j denotes the period t − j when the contacts relevant for tracing were established.

So we combine the probability of being traced, πj,i
C,t, with the probability of testing positive

which depends on the ratio of the test availability at time t, i.e., Υt, and the number of

subjects who were exposed either in period t− 1 or in period t. The share of agents exposed

to infected subjects showing symptoms in period t is denoted by E0
t and is defined exactly

as Et in equation (26). We denote the subjects who in period t − 1 have met agents who

become symptomatic in period t, as E1
t , which is formally defined in Appendix A.4.

Tests are administered following a pecking order: First government uses all the available

tests to check the current period’s contacts and if any tests are left, they are used to test

the previous period’s contacts. Pecking order is optimal because subjects who were untested

asymptomatic in the previous period may have recovered before testing is performed.

The probability of being tested conditional on being traceable in period t is denoted by

π0
t,T and defined in equation (27). Given the pecking order, the probability of being tested

conditional on being traceable in period t− 1 is given by

π1
T,t = min

(
1,

max (0,Υt − E0
t )

E1
t

)
. (A.8)

Note that the probability of testing positive defined in equation (A.7) is conditioned on

the type of the agents in period t− 1 (i.e., Type-A, Type-T, and Type-S). Recall that what

we are ultimately interested in is to pin down the dynamics of types in equations (B.11)

and (19), which requires us to know the average probability for an untested asymptomatic

subject to test positive in period t (πA
P,t) and the average probability for newly infected

subjects to test positive in period t (πT
P,t).

The average probability for an untested asymptomatic subject in period t to test positive

in the same period under the comprehensive contact tracing technology is

πA
P,t =

IAt−1 (1− πIS − πR)
(
1− πA

P,t−1

)
IAt

·
[
π0,A
P,t + (1− π0,A

C,t ) · π
1,A
P,t

]
(A.9)

+
Tt−1

(
1− πT

P,t−1

)
IAt

·
[
π0,A
P,t + (1− π0,A

C,t ) · π
1,T
P,t

]
,

where the first expression within square brackets denotes the probability for a Type-A agent

27Note that π0,S
C,t is the probability for a susceptible agent to test positive in period t, which is zero.
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to test positive in period t and the expression within the second square bracket is the prob-

ability for a Type-T subject to test positive in period t.28 The two bits outside the square

brackets weigh the share of Type-A and Type-T with respect to the amount of untested

asymptomatic cases in period t. This adjustment is needed as the transition in equation

(B.11) is expressed in terms of the size of the untested asymptomatic subjects at time t.

The average probability for a newly infected subject to test positive in period t under

the comprehensive contact tracing technology is given by

πT
P,t = π0,T

P,t + (1− π0,T
C,t ) · π

1,S
P,t . (A.10)

A.1 Tracing Probabilities

In these subsections, we complete the derivation of the probability of testing positive for

newly infected and untested asymptomatic agents under the comprehensive contact tracing

technology.

Conditioning on Type-A and Type-T remaining untested asymptomatic through

period t. Since tracing is conducted in period t, the probability distributions for Type-A

and Type-T subjects have to be conditioned on the event that these subjects did not test

positive at the end of period t − 1 and, thereby, remain untested asymptomatic through

period t.

We rely on the Bayes theorem to condition the probability distributions for Type-A and

Type-T agents on not getting tested at the end of period t− 1 :

fA,A
t−1|t(k) =

fA,A
t−1 (k)

{
1−

[
1− (1− πIS)

k
]
π0
t−1,T (1− πF )

}
∑φc(cst−1)

k=0 fA,A
t−1 (k)

{
1−

[
1− (1− πIS)

k
]
π0
t−1,T (1− πF )

} , (A.11)

and

fT,A
t−1|t(k) =

fT,A
t−1 (k)

{
1−

[
1− (1− πIS)

k
]
π0
t−1,T (1− πF )

}
∑φc(cst−1)

k=0 fT,A
t−1 (k)

{
1−

[
1− (1− πIS)

k
]
π0
t−1,T (1− πF )

} , (A.12)

where
[
1− (1− πIS)

k
]
denotes the probability that at least one of the existing T-links or

A-links contacts is with an asymptomatic subject who revealed symptoms in period t − 1,

making the other subject traceable. Conditional on being traced in period t− 1, the subject

28It should be noted that these probabilities for Type-A and Type-T to test positive in t reflect the pecking
order: If an agent is traced via their time-t contacts, they will not be tested via their time-(t− 1) contacts.
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will test positive with probability π0
t−1,T (1− πF ) at the end of the same period. As we will

formally define later, π0
t−1,T is the probability of being tested at the end of period t−1 based

on tracing the t− 1 contacts.

All other distributions do not need to be adjusted.29 It is convenient to write: fA,T
t−1|t(k) =

fA,T
t−1 (k), f

T,T
t−1|t(k) = fT,T

t−1 (k), f
S,T
t−1|t(k) = fS,T

t−1 (k), and fS,A
t−1|t(k) = fS,A

t−1 (k).

Active Links Some of the A-links are not relevant for traceability and testing in period t

because infected asymptomatic subjects may become symptomatic or recover or test positive

in period t−1. T-links could also become non-relevant for traceability and testing in period t

because some of the newly infected agents test positive at the end of period t−1. Therefore,

it is convenient to distinguish between total links (or simply links) and active links, which

are those links with infected people who may still reveal symptoms in period t and can make

the subjects traceable in that period.

Let us start considering the T-links first. The probability that out of k T-links, k of them

will be still active in period t is given by the following binomial distribution:

gi,Tt−1(kt−1|kt−1) = B
(
kt−1, kt−1,

(
1− πT

P,t−1(i)
))

, (A.13)

where the probability of success (i.e., the link remains active) is the probability for the newly

infected subjects met by the Type A, or Type-T, or Type-S agents of not testing positive at

the end of period t− 1; that is, 1− πT
P,t−1(i), for each type of agent i ∈ {A, T, S}. Note that

these probabilities depend on the Type i of the agent establishing the contact with newly

infected agents (the T-link). These probabilities are derived in Appendix A.2.

The final step is then to combine this distribution with the appropriate distribution

f i,j
t−1|t(kt−1) –derived in the previous section– to obtain the marginalized probability distri-

bution of active T-links for each type as follows:

gi,Tt−1(kt−1) =

φC(cst−1)+φN (ns
t−1)+φo∑

k=0

gi,Tt−1(kt−1|k)f
i,j
t−1|t(k), i ∈ {A, T, S}. (A.14)

As far as the active A-links, it is first important to realize that, unlike T-links, A-links

can also become inactive as infected asymptomatic subjects may become symptomatic or

may recover in period t − 1. Another difference with T-links is that the probability that

29The distributions fT,T
t−1|t(k) and fA,T

t−1|t(k) do not need to be adjusted. The reasons is that meeting with

newly infected people in period t − 1 does not make Type-T and Type-A agents traceable in period t − 1
because it takes at least one period for newly infected people to become symptomatic. Testing Type-S agents
in period t− 1 does not affect their probabilities of having k T-links or A-links as the outcome of these tests
is negative (we do not allow for false positive in test outcomes).
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the A-link will remain active in period t depends on whether the Type-A, or Type-T, or

Type-S individual is traceable at time t − 1. This is because if Type-A, Type-T, or Type-

S agent is traceable in period t − 1, then at least one of their A-links must have turned

symptomatic in that period. In this case, the probability for the A-link to remain active is

lower because it could have been this very A-link to have made the Type-A, or Type-T, or

Type-S agent traceable.30 The derivation of the distribution of the active A-links gi,At−1(kt−1)

for i ∈ {A, T, S} is tedious and thereby we refer the interested reader to Appendix A.3.

Tracing Probabilities. It is convenient to aggregate the distribution of having k active

T-links gi,T and that of having k active A-link as follows:

git−1(kt−1) =

φC(cst−1)+φN (ns
t−1)+φO∑

j=1

gi,Tt−1(j)g
i,A
t−1(kt−1 − j), i ∈ {A, T, S}. (A.15)

We take the same step shown in equation (25) to compute the probability for each type

(Type-A, Type-T, and Type-S) to be traceable due to one of their t− 1 contacts

π1,i
C,t =

φC(cst−1)+φN (ns
t−1)+φO∑

k=0

[
1− (1− πIS)

k
]
git−1(k), i ∈ {A, T, S}. (A.16)

These are the probabilities that Type-A, Type-T, Type-S agents become traceable in period

t because of their contacts in period t− 1. These probabilities are used in the main text to

define the probability of testing positive for these three type of agents. See equation (A.7).

A.2 Active T-Links

The objective of this subsection is to derive analytically the probability that a T-link will

become inactive (i.e., no longer relevant for contact tracing), πT
P,t−1(i), for the three types

i ∈ {A, T, S}. Since Type-T and Type-S agents cannot infect anyone in period t − 1, the

probability that their T-links will remain active in period t depends on the average probability

that a newly infected person in period t− 1 tests positive at the end of the same period. In

the main text we defined this probability, which we denote with πT
P,t−1, in equation (A.10).

πT
P,t−1(i) = πT

P,t−1, i ∈ {T, S}. (A.17)

30Since it takes at least one period for the newly infected to become symptomatic, this scenario and the
ensuing adjustment to the probability distribution of active links do not apply to the T-links.
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This is the probability to be used in the conditional distribution of active T-links introduced

in equation (A.13) for S-type and T-type agents.

As far as Type-A agents are concerned, the derivation of this probability requires a bit

more work since some of the T-links of these agents are infectious links. Therefore, the

probability for an asymptomatic subject to be tested can be written as the weighted average

of the probability of being tested via one of the infection links the asymptomatic subject

has created at time t − 1, π̃T
P,t−1, and the probability for the same subject to be tested via

random meetings, πT
P,t−1; that is,

πT
P,t−1(A) =

τ

τ + (1− τ) τt−1

π̃T
P,t−1 +

(1− τ) τt−1

τ + (1− τ) τt−1

πT
P,t−1, (A.18)

where the weights reflect the fraction of infectious T-links. Note that πT
P,t−1 is the same

probability for susceptible and newly infected agents to be tested at the end of period t− 1,

which is shown in equation (A.17).

The probability for a Type-A agent to be tested via the infection links they have created

at time t − 1, π̃T
P,t−1, has not been derived yet. We tackle this problem by looking at the

probability of being traced from the perspective of a subject that became infected as a result

of meeting the Type-A agent in period t− 1.

With this change of perspective, the probability π̃T
P,t−1 can be obtained by taking three

familiar steps. First, we take the step in equation (25) to obtain the probability for the

newly infected agents to be tested at the end of the period:

π̃0,T
C,t−1 =

φC(cst−1)+φN (ns
t−1)+φO∑

k=0

[
1− (1− πIS)

k−1
]
fT
t−1(k), (A.19)

where, unlike in equation (25), the probability that none of the contacts of the newly infected

agent will become symptomatic, (1− πIS), is to the power of k − 1. This tweak is motivated

by the fact that it is known that the newly infected agent cannot be traced through the link

with the Type-A subject who infected them in period t− 1.31

The second step is to obtain the probability of testing positive conditional on being traced,

which is precisely the familiar step taken in equation (21): π̃0,T
P,t−1 = π̃0,T

C,t−1 · π0
t−1,T · (1− πF ).

The third step is familiar too: we have to take into account the possibility that the agents

31Type-A agents are, by definition, untested asymptomatic in period t. Consequently, the subject they
infected in period t− 1 cannot be traced via their interaction with the Type-A agent. However, the subject
can be traced via other non-infectious interactions they entertained in period t− 1 with other asymptomatic
subjects.
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infected by the Type-A agent in period t − 1 can be tested because of their contacts in

the previous period t − 2. Thus, we write π̃T
P,t−1 = π̃0,T

P,t−1 + (1 − π̃0,T
P,t−1) · π

1,T
P,t−1, where the

probability of being tested because of (non-infectious) contacts that occurred in the previous

period, π1,T
P,t−1, will be defined later.32

A.3 Active A-Links

We now turn to the A-links. It is first important to realize that A-links can also become

inactive because the asymptomatic person on the other end of the link recovers or develops

symptoms at the end of the previous period. An additional complication is whether the

Type-A, or Type-T, or Type-S individual is traceable at time t − 1 affects the probability

that the A-link will remain active in period t.

If the Type-A, Type-T, or Type-S subject is not traceable in period t − 1, then no

asymptomatic individual they met in period t−1 turned symptomatic in that period. Hence,

the probability that the link will remain active in the next period is (1− πR)
(
1− πA

t−1,P

)
.

Thus, the probability that kt−1 A-links out of kt−1 total links is given by the following

binomial distribution:33

gi,At−1(kt−1|kt−1, Aj = 1) = B
(
kt−1, kt−1, (1− πR)(1− πA

t−1,P )
)

i ∈ {A, T, S}, (A.20)

where Aj = 1 means that the Type-A subject is non-traceable at time t − 1. Note that

this probability is the same across the three types of agents considered (Type-A, Type-T, or

Type-S), which are denoted by i.

If the Type-A, Type-T, or Type-S subject is traceable in period t− 1, then at least one

of their A-links must have turned symptomatic in that period. Furthermore, other asymp-

tomatic subjects might have also become symptomatic and hence the probability that the

link will remain active in the next period is (1− πIS − πR)
(
1− πA

t−1,P

)
. All told, the proba-

bility that kt−1 A-links out of kt−1 total links is given by the following binomial distribution

gi,At−1(kt−1|kt−1, Aj = 2) = B
(
kt−1, kt−1 − 1, (1− πIS − πR)(1− πA

t−1,P )
)

i ∈ {A, T, S}.
(A.21)

As before, this probability is the same across the three types of agents considered (Type-A,

32We know for sure that these contacts at time t − 2 were not infectious because we are conditioning on
an agent being infected by the Type-A agent in period t− 1.

33Since the subjects that met the Type-A subject are already untested asymptomatic, they cannot be
infected by the Type-A agent. Thus, her probability of being tested in period t − 1 is just the average
probability of being tested for an untested asymptomatic, πA

t−1,P .
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Type-T, or Type-S), which are denoted by i.

Then we combine the two distributions using the weight for the agents that are not traced

in period t− 1

gi,At−1(kt−1|kt−1) = ιit−1(k) · g̃
i,A
t−1(kt−1|kt−1) + (1− ιit−1(k)) · ĝ

i,A
t−1(kt−1|kt−1), (A.22)

where i ∈ {A, T, S} and ιit−1(k) denotes the weights, which of course depends on the num-

ber of total contacts, k, the agent who met with the untested asymptomatic subject has

entertained as well as the type (A,T, or S) of agent.

Note that the probability of being traced in period t for a susceptible subject via their

contacts made in the same period is πS,0
C,t−1(k) ≡ 1 − (1 − πIS)

k. So, by the law of large

numbers, the share for non-traceable susceptible agents is as follows:

ιSt−1(k) = (1− πIS)
k. (A.23)

The share of non-traceable A-type and T-type subjects can be derived analogously. How-

ever, we need to adjust for the possibility that those traced A-type and T-type agents do

not test positive at the end of period t− 1. In this case, they would no longer been untested

asymptomatic in period t and hence they will no longer be considered A-type or T-type

agents. The share of non-traceable A-type subjects is therefore given by the following

ιit−1(k) =
(1− πIS)

k

(1− πIS)k + [1− (1− πIS)k]
(
1− π0

t−1,T (1− πF )
) , i ∈ {A, T}. (A.24)

This adjustment relies on the probability of testing positive conditional on being traced

(π0
t−1,T (1− πF )).

At last, we take the step made in equation (A.14) and obtain the marginalized probability

distribution of active A-links for the three types: gi,At−1(kt−1) for i ∈ {A, T, S}.

A.4 Exposed in the Previous Period

The measure of the subjects who, in period t − 1, were exposed to the newly symptomatic

individuals is defined below:

E1
t =(1− π0,A

C,t )

[
IAt−1 (1− πIS − πR)

(
1− πA

P,t−1

)
IAt

π1,A
C,t +

Tt−1

(
1− πT

P,t−1

)
IAt

π1,T
C,t

]
(1− πIS)I

A
t

(A.25)

+ (1− π0,S
C,t )π

1,S
C,tSt + (1− π0,R

C,t )

[
RA

t−1

RA
t

π1,R
C,t +

πRI
A
t−1

RA
t

π1,RA
C,t

]
RA

t ,
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where πR,1
C,t is the probability to be traced for a Type-R agent, which is defined as an agent who

became unobserved recovered in period t− 1 or earlier. πRA,1
C,t is the probability to be traced

for a Type-RA agent, which is defined as an agent who became an unobserved recovered

agent in period t and hence was an asymptomatic agent in t − 1. This equation takes into

account that the agents of a group may have different histories of interactions due to changes

in their health status. For instance, there is a difference for untested asymptomatic agents

who became newly infected in the previous period and the ones who already were infected in

the previous period. This is captured by the two terms in the first square bracket of equation

(A.25).

The derivation π1,R
C,t for the Type-R agent is the same as for the Type-S agents πS,1

C,t with

one difference. The contacts with untested asymptomatic agents in period t− 1 do not need

to be adjusted in contrast to Type S-Agents because the Type-R agent cannot change their

health status. This implies that the adjustment in equation (A.6) is not needed and, thereby,

fR,A
t−1 (k) = fA,A

t−1 .

The derivation π1,RA
C,t for a Type-RA agent is exactly the same as for a Type-A agent with

two exceptions. First, the Type-RA agent recovers and becomes an unobserved recovered

agent independent of getting tested. For this reason, we can skip the time adjustment in

equation (A.11) so that fRA,A
t−1|t (k) = fA,A

t−1 . Second, the share of non-traceable subjects does

not depend on the probability of getting tested. Replacing equation (A.24) with ιRA
t−1 =

(1 − πIS)
k captures this difference. The remaining steps are the same as both types have

been asymptomatic agents in the previous period.

Finally, the probability to be traced for susceptible agents due to previous period contacts

is the same regardless of whether they get infected in period t. Hence this probability is

equal to the probability for an S-type agent to be traced, which is denoted by π1,S
C,t .

B Quarantine Exposed Contacts Without Tests

We extend the model to include a scenario, in which the government can quarantine (a

subset of) the traced agents without administering a test. As a consequence, the model

features now a new group of quarantined agents. The group contains all agents that have

been traced and put into quarantine without being tested. As no test is administered, the

health status of quarantined agents is not publicly observed. This implies that the group

contains susceptible agents, asymptomatic agents and unobserved recovered agents, which

cannot be distinguished by the government. We assume that the imposed quarantine, which
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is implemented as a tax on consumption µQ is the same as for positive tested agents. Note

that without testing now lots of susceptible subject will be quarantined and since tests are

not available, some infected agents may leave the quarantine still asymptomatic and infect

susceptible subjects.

In particular, we define two different strategies. In the first one, the government has no

tests available. Hence, policymakers have to quarantine all the close contacts traced every

week. The case of no tests is called “all exposed contacts quarantined”. In the second one,

the government administers tests. However, the government combines now testing with a

tighter quarantine policy if not enough tests are available. In particular, policymakers decide

to quarantine all the agents for whom no test is available. Thus, if tests are scarce, a fraction

of traced contacts is tested and their health status is observed. The other fraction is sent

directly into quarantine without a test. This case is called “tighter quarantine”.

B.1 Extended Model

The incorporation of this additional possibility slightly alters the setup of the model, as

outlined here. The two scenarios are described in the next subsection.

B.1.1 Agents with Changed Optimization Problem

The additional possibility of quarantine alters the maximization problem of the agents with

unobserved health status. Health authorities can directly quarantine susceptible, asymp-

tomatic and unobserved recovered subjects without conducting a test. This implies that the

model features now three additional types: quarantined susceptible subjects, quarantined

untested asymptomatic subjects and quarantined unobserved recovered subjects.

The possibility of quarantine without tests alters the decision problem for the susceptible,

asymptomatic and unobserved recovered. The probability for an individual with unknown

health status to get quarantined is πi
Q,t, i ∈ {T,A, S\T, U}, where the individuals can be

separated as newly infected (T ), asymptomatic infected (A), susceptible that did not get

infected (S\T ) and unobserved recovered U . The value functions for these agents include

now the probability of getting quarantined without test:

V S
t = max

cst ,n
s
t

u (cst , n
s
t) + β

 (1− τt)
{
(1− π

S\T
Q,t )V

S
t+1 + π

S\T
Q,t V

S,Q
t+1

}
+ . . .

τt

{
πT
P,tV

P
t+1π

T
Q,tV

A,Q
t+1 +

(
1− πT

P,t − πT
Q,t

)
V A
t+1

}  , (B.1)

V A
t = u(c̃st , ñ

s
t) + β

[
πISV

IS
t+1 + πRV

UR
t+1 + (1− πIS − πR)× . . .(

πA
P,tV

P
t+1 + πA

Q,tV
AQ
t+1 + (1− πA

Q,t − πA
P,t)V

A
t+1

) ]
, (B.2)
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V UR
t = u(c̃st , ñ

s
t) + β

[
(1− πUR

Q,t )V
UR
t+1 + πU

Q,tV
U,Q
t+1

]
(B.3)

where V i,Q
t+1 , i{S,A, U} is the value function of the three new quarantined types, which are

derived below. The probabilities of getting quarantined will be characterized in Section B.2.

Quarantined agents have not been tested by the government so that the health status

is not revealed. If quarantined agents do not develop symptoms, it is assumed that agents

leave the quarantine with a probability πQ.
34 We set πQ = 0.5 in the quantitative part,

which implies an average quarantine duration of 2 weeks. This implies that quarantined

agents stay on average two weeks in quarantine. As the agents do not observe their type

in quarantine, we keep on assuming that they behave like quarantined susceptible in such

a scenario of limited information.35 Thus, quarantined agents choose consumption, cPt and

labor nP
t to maximize their utility as quarantined susceptible:

V S,Q
t = max

cQt ,nQ
t

u
(
cQt , n

Q
t

)
+ β

[
πQV

S
t + (1− πQ)V

S,Q
t

]
(B.4)

V A,Q
t = u

(
c̃Qt , ñ

Q
t

)
+ β

[
πISV

IS
t+1 + πQ

{
πRV

U
t+1 + (1− πIS − πR)V

A
t+1

}
+ (B.5)

(1− πQ)
{
πRV

U,Q
t+1 + (1− πIS − πR)V

A,Q
t+1

}]
,

V U,Q
t = u

(
c̃Qt , ñ

Q
t

)
+ β

[
πQV

U
t + (1− πQ)V

U,Q
t

]
(B.6)

where c̃Qt and ñQ
t denote the optimal solution to the problem of the quarantined susceptible

agents. The budget constraint is the same as for the positive tested agents:

(
1 + µQ

c + αµS
c,t

)
cQt = wP

t n
Q
t + ΓQQ

t , (B.7)

where µQ
c proxies the effects of imposing a quarantine on individuals’ consumption and labor

decisions. The tax paid by quarantined agents is rebated to them, ΓQQ
t .

The government balances its budget in every period. There is one additional equation

now because the revenue of the social distancing and quarantine taxes are rebated to the

quarantined agents, on which these taxes are levied on:

µS
c,t

[
Ct + α

(
CIS

t + CQ
t

)]
= ΓL

t

(
St + IAt +RU

t +RO
t + (1− α)

(
ISt +Qt + Pt

))
,

(B.8)

µQ
c · CQ

t = ΓQQ
t ·Qt, (B.9)

34For computational reasons, we assume that quarantine has a stochastic duration in the absence of tests.
35Conditional on the belief of never having been infected, agents’ beliefs about future changes in their

health status are model consistent.
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where we denote the share of quarantined individuals with Qt = QS
t + QA

t + QUR
t , which is

aggregate of the susceptible, asymptomatic and unobserved recovered agents in quarantine.

CQ
t ≡ cQt Qt stands for total consumption of the quarantined (not tested) agents.

The maximization problem for the tested-positive agents, infected symptomatic agents

and observed recovered agents as well as the remaining equations are unchanged.

B.1.2 Dynamics of Agents’ Types

The possibility of quarantine also alters the dynamics of some types. Since susceptibles can

be placed in quarantine and can return from quarantine, the law of motion for susceptibles

evolves now as follows:

St+1 = (1− π
S\T
Q,t )(St − Tt) + πQQ

S
t (B.10)

The size of non-quarantined asymptomatic agents evolves according to the law of motion

IAt+1 = (1− πT
P,t − πT

Q,t)Tt + (1− πA
P,t − πA

Q,t)(1− πIS − πR)I
A
t + πQ(1− πIS − πR)Q

A
t ,

(B.11)

where we account that if asymptomatic agents leave quarantine too early, they belong again

to the group of non-quarantined asymptomatic agents. Furthermore, the model features

also the new typoe of quarantined subjects, which consists of susceptible, asymptomatic and

unobserved recovered subjects and is given by

Qt+1 = QS
t+1 +QA

t+1 +QU
t+1 (B.12)

QS
t+1 = (1− πQ)Q

S
t + π

S\T
Q,t (St − Tt) (B.13)

QA
t+1 = (1− πQ)(1− πIS − πR)Q

A
t + πT

Q,tTt + πA
Q,t(1− πIS − πR)I

A
t . (B.14)

QU
t+1 = (1− πQ)Q

U
t + πU

Q,tR
U
t + (1− πQ)πRQ

A
t (B.15)

The pool of infected symptomatic agents evolves now as follows:

ISt+1 = (1− πR − πD)I
S
t + πIS(I

A
t + Pt +QA

t ). (B.16)

The share of unobserved recovered is given as:

RU
t+1 = (1− πU

Q,t)R
U
t + πRI

A
t + πQQ

U
t + πQπRQ

A
t . (B.17)

All other remaining equations are unchanged. The only four variables not yet defined are
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the probabilities of getting quarantined without a test for newly infected agents, susceptible

agents that did not get infected, untested asymptomatic agents and unobserved recovered

agents.

B.2 Probability of Getting Quarantined Without Tests

We are now characterizing the probability to getting quarantined for the two scenarios.

B.2.1 Strategy 1: All Exposed Contacts Quarantined

The strategy is to quarantine all current week exposed contacts without administering any

tests. As a consequence, the probability to get tested is zero, that is: πT
P,t = πA

P,t = 0.

However, the probabilities to get traced are exactly the same as for the contact tracing tech-

nology. As every traced contact gets send into quarantine, we have the following proabilities

for the newly infected subjects, asymptomatic infected subjects and unobserved recovered

subjects:

πA
C,t = πUR

C,t =

φC(cst )+φN (ns
t )+φO∑

k=0

[
1− (1− πIS)

k
]
ft(k), (B.18)

πT
C,t =

φC(cst )+φN (ns
t )+φO∑

k=0

[
1− (1− πIS)

k
]
fT
t (k). (B.19)

where the tracing probabilities are taken directly from equations (23) and (25). The only

additional element that we need to derive is the tracing probability for the susceptibles that

did not get infected π
S\T
Q,t . Similar to the logic for the newly infected, we now need to get

the probability of meeting k asymptomatic agents conditional on not getting infected. To

do so, we apply the Bayes theorem to obtain

f
S\T
t (k) =

ft(k)(1− τ̃(k))

1− τt
, (B.20)

where 1− τ̃(k) ≡ (1−τ)k is the probability to have no infectious contact out of k interactions,

and τt stands for the average probability for susceptible subjects to get infected. We can

then characterize the tracing probability of a suceptible that is not infected as:

π
S\T
C,t =

φC(cst )+φN (ns
t )+φO∑

k=0

[
1− (1− πIS)

k
]
f
S\T
t . (B.21)
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B.2.2 Strategy 2: Tighter Quarantine (Combination of Tests and Quarantine)

This strategy requires to conduct tests for the traced agents first. If no tests are available

anymore, the reminding subset of traced individuals is quarantined. Thus, this strategy

combines testing and directly quarantining exposed contacts without being tested. Impor-

tantly, there is a pecking order as the government first tries to test everyone. This implies

that the probability of getting tested πT
P,t and πP,t is the same as for the contact technology

characterized in Section 3. Therefore, a traced agent can only get quarantined if there are

more exposed contacts then tests available, which is Et > Υt. Importantly, the probability

of quarantining a traceable contact does not depend on the contact health status, but in fact

on the amount of exposed relative to tests, which is

πQ,t = max(0,
Et −Υt

Et

) (B.22)

The quarantine probabilities for the different agents are then given as

πi
Q,t = πi

C,t · πQ,t, i ∈ {S\T, T,A, U}, (B.23)

where the tracing probabilities are the same as for strategy 1.

B.3 Quantitative Analysis

Figure B.5 compares the implications of having all the contacts of confirmed cases quaran-

tined without testing them first (strategy 1). This is the black dotted line. To assess the

importance of the complementarities between tracing and testing, one should compare that

line with the blue line that shows the implications of quarantining only those contacts who

test positive in a scenario with unlimited testing capacity availability. The difference be-

tween these two lines illustrates the gain from having enough tests available to evaluate the

health status of close contacts and to decide when quarantined agents can leave quarantine.

This shows that testing improves outcomes quite a bit. In particular, testing combined with

tighter quarantine (green dash-dotted line) allows policymakers to lower quite considerably

the death toll (Deaths graph) and to make the pandemic recession substantially less severe

(Aggregate Consumption graph).36

36Cumulative deaths increases because the stochastic duration of quarantine, which is calibrated to be 2
weeks in expectation, implies that some quarantined agents are still asymptomatic infected when they leave
the quarantine.
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Figure B.5: Analysis of the impact of the testing capacity for contact tracing. The consid-
ered scenarios are contact tracing with unlimited testing capacity (blue solid
line), contact tracing with limited testing capacity (red dashed line), contact
tracing with quarantining all traced conducts without administering any tests
(black dotted line) and mixing testing and quarantine, in which only the agents
are quarantined for whom no test is available (green dash-dotted line).
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C Random Allocation of Tests

An alternative to a contact tracing strategy would be to test (a subset of) the population

randomly. For this testing approach, the government does not use or acquire any strate-

gic information from contact tracing on how to efficiently use the available tests.37 As

a consequence, the probability of getting tested is the same for the susceptible, untested

asymptomatic, and unobserved recovered agents. We consider two different strategies, in

which the government relies (partially) on random testing.

The first strategy allocates its entire testing capacity to test the agents randomly. We

denote this scenario as “random testing”. The second scenario combines contact tracing

and random testing. The idea is to conduct contact tracing in a first step. The government

administers then tests for the traced contacts. If there are some leftover tests after this step,

the government allocates then, in a second step, the remaining tests randomly among the

untraced population, for which the health status is not observed. We denote this scenario

as “Contact Tracing + Random Tests”.

C.1 Scenario 1: Random Testing

This strategy randomly allocates the tests among the agents, for which the health status

is not observed. This implies that the probability of getting tested is the same for the

susceptible, untested asymptomatic, and unobserved recovered agents.

To derive the probability of getting tested, it is helpful to interpret this as an extreme

case of contact tracing. In this approach, every agent gets traced because random testing

considers every agent with unobserved health status for testing. The tracing probabilities

are then given as:

πi
C,t = 1, i ∈ {A, S, T,RU}. (C.1)

Compared to contact tracing, the tracing probabilities do not contain any additional strategic

information anymore.

As every agent get traced, the number of subjects to be tested is very large. The pool of

agents that the government tests is given as

Et = St + (1− πIS)At +RU
t . (C.2)

The government has the number of tests Υt available. Therefore, the probability of getting

37We assume that the government does not test observed recovered as well as quarantined agents.
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tested conditionally on being traced depends on the number of tests Υt relative to the pool

Et:

πi
P,t = min

(
1,

Υt

Et

)
, i ∈ {A, T}. (C.3)

We can plug equations (C.1) and (C.3) into equation (21) to evaluate the probability

of testing positive for newly infected subjects, πT
P,t, and subjects infected in earlier periods,

πA
P,t.

C.2 Strategy 2: Contact Tracing Combined with Random Testing

This strategy combines contact tracing and random testing. The government conducts con-

tact tracing and testing in a first step. If some testing capacity is left after contact tracing,

the remaining tests are used to randomly test the population. Importantly, the implied

pecking order (1. contact tracing + testing, 2. random testing) is optimal since it is more

likely to catch an infected agent with contact tracing than with random testing. We also

assume that an agent gets tested only once, that means that a traced contact is excluded

from the random testing pool.

The setup implies that the probability of getting tested for the newly infected and subjects

infected in earlier periods depends now on the probability of testing positive via tracing as

well as random testing:

πi
P,t = πi,T r

P,t + πi,RT
P,t , i ∈ {A, T}. (C.4)

where the superscript Tr indicates contact tracing and RT indicates random testing. The

pecking order implies that the probabilities to get detected via tracing is directly given from

the contact tracing technology derived in Section 3.

The pecking order implies that the probability to get a positive test result via random

testing is conditional on not being traced via contact tracing. This can be interpreted as an

extreme case of contact tracing, in which every agent, that has not been traced via contact

tracing in a first stage, gets traced. We use this definition to derive the adjusted probabilities

without introducing new notation. Thus, the probability of being traced via random testing

can be written as

πi,RT
C,t = 1− πi,T r

C,t , i ∈ {A, S, T,RU}. (C.5)

Therefore, the random testing part can be interpreted as tracing of all agents that have not
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been traced initially, which is then the entire pool of traceable agents minus the agents that

have already been traced via contact tracing. Thus, the pool of traced agents for random

testing is:

ERT
t = St + (1− πIS)At +RU

t − ETr
t , (C.6)

= St + (1− πIS)At +RU
t −

(
πS
C,tSt + πA

C,t (1− πIS) I
A
t + πUR

C,tR
U
t

)
, (C.7)

where ETr
t is the pool of agents that has been traced with the contact tracing technology. The

government has at this stage the number of tests max(Υt−ETr
t , 0) available. Therefore, the

probability of getting tested randomly (conditionally on not being traced via contact tracing

in the first stage) is

πi,RT
P,t = min

(
1,

max(Υt − ETr
t , 0)

ERT
t

)
, i ∈ {A, T}. (C.8)

Thus, the probability of tesing positive for newly infected subjects and subjects infected in

earlier periods via random testing is given as:

πi,RT
P,t = πi,RT

C,t · πi,RT
P,t · (1− πF ), i ∈ {A, T}. (C.9)

C.2.1 Quantitative Analysis of this Strategy

The contribution of this strategy (combination of contact tracing and random testing) is

shown in Figure C.6. The scenario compares contact tracing relative to the outlined strategy,

where the excess tests capacity is allocated randomly. The marginal gains of this random

allocation is negligible. The probability to test an infected agents increases only slightly and

policymakers cannot avert the collapse of the testing system due to shortage of tests. The

testing system collapses slightly later when random testing is combined with contact tracing

as one can see by noting that the number of infected asymptomatic subjects now peaks two

weeks later.

D Model Solution

Solution Algorithm The solution algorithm solves the model iteratively based on a nu-

merical root finder relying on perfect foresight expectations. It computes the sequence of pol-

icy functions {nR
t , n

IS
t , nP

t , n
RO
t }Tt=1 for T = 250 weeks for a given sequence of taxes {µS

c,t}Tt=1

and given initial asymptomatic and symptomatic infected agents: {IA1 , IS1 }. The algorithm

is summarized below:
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Figure C.6: Combining contact tracing with random testing. The impact of using the
remaining test capacity in a second step (after testing each traced contact) for
random testing is shown.

1. Solve the model for the pre-pandemic economy.

2. Guess a path for the sequence of labor {nR
t , n

IS
t , nP

t , n
RO
t }Tt=1.

3. Based on the guessed path, solve for consumption, labor, the marginal utilities and

intraperiod utility of the susceptible, infected symptomatic, tested-positive, and ob-

served recovered agents, that is {cit, λi
t, u

i
t}Tt=1, i ∈ {S, IS, P,OR} and the lump sum

transfer from consumption taxes {ΓL
t }Tt=1.

38

4. Calculate the interactions of agents (e.g. for susceptible agents ft(k)) based on their

consumption and labor decisions. This allows us to calculate the probability of getting

infected τt (for details see paragraph below) and also the probabilities of getting tested

for newly infected πT
c,t and untested asymptomatic agents πA

c,t. Crucially, the latter

objects depends on the tracing technology and the testing capacity. In case of the

comprehensive tracing technology, the amount of active links from the previous period

(e.g for susceptible agents with T-type agents gS,Tt−1(k)) need to be calculated. Based

38To be precise, the marginal utility of susceptibles is actually calculated later in step 6 as it depends on
the testing probabilities.

63



on these objects, the dynamics of the different groups can be computed by forward

iteration so that the sequences {St, Tt, I
A
t , Pt, I

S
t , R

U
t , R

O
t , Dt, Popt}Tt=1 are obtained.

5. Iterate backwards to solve the utility of the different agents, that is

{V S
t , V A

t , V UR
t , V P

t , V IS
t , V OR

t }Tt=1.

6. Calculate the marginal utility of consumption for a susceptible λs
t based on the utilities

of the different groups, the probability to get infected, and the probability to get tested.

7. To solve for the sequences pf {nR
t , n

IS
t , nP

t , n
RO
t }Tt=1, use a numerical root finder that

minimizes the error in budget constraint for the tested-positive and infected symp-

tomatic agents, the government budget constraint for the social distancing taxes, and

the first order condition with respect to labor of susceptibles in each period t.

8. Update the path for the sequence of labor slowly and repeat steps 3 - 7 until convergence

of {nR
t , n

IS
t , nP

t , n
RO
t }Tt=1.

We use the approximated infection rate in equation (6) to solve the decision problem

of the agents (see Section 2.2) and to compute the dynamics of types in Section 2.7. To

pin down the probabilities of getting tested (πT
P,t and πA

P,t) in Section 3, we use the exact

definition of the rate τt in equation (5).

E The Individual Risk of Getting Infected

The probability of getting infected τt as a function of consumption and labor decisions enters

the decision problem of the susceptible, untested asymptomatic, and unobserved recovered

agents. See Section 2.2.This probability, which is defined in equation (5), depends on the

non-differentiable functions φc(c
s
t) and φn(ns

t) and introduces ridges and cliffs in the value

function V s
t of the agents, making the solution to the optimization problem very challenging.

To improve the speed and the reliability of the solution algorithm, it is convenient to take

the following two steps.

First, we linearly approximate the probability of getting infected conditional on a sus-

ceptible individual entertaining k interactions around the average number of interactions at

steady state (k̄c, k̄n, k̄o) and obtain

p = 1− (1− τ)kc+kn+ko

≈ − ln (1− τ) (1− τ)k̄c+k̄n+k̄o︸ ︷︷ ︸
Ξ

· (kc + kn + ko) (E.1)
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Note that Ξ is just a constant that depends on parameters and the average number of trials

k̄ is implied by the calibration of the structural parameters of the model.

We then characterize the expected probability for a susceptible individual to get infected

conditional on consuming cst and working ns
t as before using the joint distribution defined in

equation (4) and, after some straightforward manipulations, we use the definition of mean

of a binomial distribution to obtain

τt =

φC(cst )∑
kc=0

φN (ns
t )∑

kn=0

φO∑
ko=0

Ξ · (kc + kn + ko) fc,t(kc) · fn,t(kn) · fo,t(ko),

= Ξ

[
φc(c

s
t)

(
CA

t

Ct

)
+ φn(n

s
t)

(
NA

t

Nt

)
+ φO

(
At

Popt

)]
(E.2)

Second, we consider a linear approximation of the functions φc(c
s
t) ≈ φc ·cst and φn(n

s
t) ≈

φn · ns
t . Plugging these linear functions into equation (E.2) leads to equation (6).

F Welfare, Ramsey Problem and Optimal Social Dis-

tancing

To make explicit the objective function of the government, we use social welfare to eval-

uate different combinations of containment policies. The welfare changes are expressed as

consumption equivalents relative to the non-pandemic economy. We also express the social

costs in U.S. dollars. In addition to this, we determine the optimal social distancing policy

by solving the Ramsey problem.

Welfare Objective The social welfare of the economy is

Ut = StV
S
t + IAt V

A
t + ISt V

IS
t + PtV

P
t +RU

t V
UR
t +RO

t V
OR
t , (F.1)

which is the weighted lifetime utility of the different agent types. We compare the welfare

gains/losses at the beginning of the pandemic:

U0 = S0V
S
0 + IA0 V

A
0 + IS0 V

IS
0 , (F.2)

where the initial measure for some types is zero (P0 = RU
0 = RO

0 = 0).

We express the welfare losses (gains) as consumption equivalents for the non-panemic

economy. In particular, we want to determine the maximum fraction of consumption ξ that

an agent would be willing to indefinitely forgo in a non-pandemic world to avoid a specific
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pandemic scenario. This consumption equivalent measure ξ depends on the social welfare at

the beginning of a pandemic scenario U0 and the utility in the non-pandemic world U⋆:

ξ = exp ((1− β)(U0 − U⋆))− 1, (F.3)

where the superscript ⋆ indicates the non-pandemic world and the social welfare of the

non-pandemic economy is: U⋆ = 1
1−β

(
log (c⋆)− θ

1/η
(n⋆)1/η

)
.39 We use the consumption

equivalent measure to calculate the social costs of the pandemic in the U.S.

The social costs are the net discounted consumption equivalent gains/losses of the entire

economy:

Social Costs =
ξC⋆

1− β
× U.S. Population2019, (F.4)

where the total population in the U.S. was around 328 million people in 2019. The social

costs could be interpreted as the willingness to invest in some technology to avoid a specific

pandemic course.

Ramsey Problem and Optimal Social Distancing To determine the optimal social

distancing path, we solve the Ramsey problem of the economy. The instrument of the

Ramsey planner is a non-negative tax on consumption. The government can commit to

setting the tax path for H periods. The planner’s problem of choosing the optimal sequence

of consumption tax rates {µS
c,t}Ht=0 can be expressed as:

argmax
{µS

c,t}Ht=0

U0. (F.5)

We find the optimal consumption tax path by using a numerical solver that maximizes the

objective function over the sequence of consumption tax rates.

G Mask-Wearing Mandate and Furlough Scheme

G.1 Mask-Wearing Mandate

We consider as alternative policy a more stringent mask-wearing mandate. Such a policy

is modeled by reducing the probability of agents getting infected conditional on meeting

39Social welfare can be conditioned on the consumption equivalent parameter ξ: Uξ⋆ = log (cs(1 + ξ)) −
θ

1/ηn
1/η + βUξ⋆ = 1

1−β log(1 + ξS) + log (cs)− θ
1/ηn

1/η + βU⋆ = 1
1−β log(1 + ξS) + U⋆. Using this result, the

costs of a pandemic can be expressed in consumption equivalents: ξ = exp ((1− β)(U0 − U⋆))− 1.

66



an asymptomatic spreader, τ . Broadening the set of activities for which wearing masks

is mandatory tends to increase social interactions because the agents’ probability of getting

infected at a single interaction falls. While a lower risk for agents to catch the virus obviously

improves the economic and health outcome of a pandemic, by spurring social interactions a

mandatory mask mandate can –all else being equal– increase the number of agents exposed

to confirmed cases. This requires then to administer more tests. So a more stringent mask

mandate may even add strain to the tracing system in the short run. In this light, this

containment measure seems to be less complementary to contact tracing than the measures

we have analyzed earlier in this paper.

Figure G.7 highlights that a mask mandate can create additional pressure on the tracing

and testing system in the short-term. In the displayed simulation, the government unexpect-

edly introduces a mask mandate in the midst of a pandemic, in which the contact tracing

and testing system is already collapsing (period 42). The simulations consider two differ-

ently stringent mask mandates, which reduce τ either by 10% or 50%. The imposed mask

mandate implies that asymptomatic infected agents are less likely to transmit the virus in an

interaction. Thus, the number of new infections is falling, which lowers the pressure on the

tracing and testing system. At the same time, agents respond to the reduced threat of the

virus by increasing their interactions. This implies that each asymptomatic agent has now

more meetings, which enlarges the number of traced contacts. The impact of these opposing

channels on the viability of the testing system is unclear. It turns out that the total amount

of traced contacts increases in the very short run in the considered scenarios. The increase

of traced contacts dampens the positive impact of the mask mandate relative to an economy,

in which there would be no shortage of tests. It also highlights that a mask mandate does

not necessarily stop the collapse of the testing system in the very short-run. Of course, as

mentioned earlier, the Figure also points out that a mask mandate improves the economic

and health outcomes. The positive effects also strengthen the viability of the testing system

in the longer-term. The analysis suggests that a temporary imposed social distancing policy

would support the introduction of a mask mandate if the government faces a shortage of

tests.

G.2 Furlough Scheme

We assess how a potential furlough scheme affects contact tracing by focusing on the costs

of quarantining agents. In particular, we vary the households’ costs of quarantining, which

are proxied with a tax on consumption µQ
c . Reducing the tax lowers the quarantine costs

and captures the essence of introducing a more comprehensive furlough scheme. Figure G.8
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Figure G.7: Mask-wearing mandate and limited testing capacity. Baseline scenario (con-
tact tracing with limited testing capacity) is contrasted to the case, in which
mask mandates are unexpectedly introduced in period 42. The simulations
show a less stringent mask mandate (reduction in τ by 10%) and more strin-
gent mask mandate (reduction in τ by 50%).

shows the impact on welfare, average consumption and deaths for different tracing scenarios

(contact tracing, comprehensive contact tracing, and quarantining all exposed contacts).

Lowering the tax increases welfare and average consumption slightly. The reason is that

quarantined agents can now consume more. At the same time, the impact on welfare and

average consumption is rather low.40 The reason is that quarantine is a targeted policy that

affects agents only for a short period of time (after positive testing throughout their infection

period).

The potential gains of introducing a furlough scheme are much larger in the case, where

the government quarantines every traced contact regardless of the test outcome. For this

reason, the slope is steeper in the scenario, where everyone exposed gets quarantined. The

reason is that the policy involves now a broader set of subjects –i.e., it is not targeted to only

40To be precise, a lowering of the tax to 0 even reduces welfare slightly compared to a very low tax. The
reason is that agents also slightly reduce their consumption and labor supply because they internalize the
costs of getting quarantined. This helps to reduce the spread of the inflation and can therefore be welfare
improving. However, the effect is very small and is dominated by other effects if all exposed agents are
quarantined.

68



Figure G.8: The economic and epidemiological impact of different furlough schemes, ex-
pressed as the level of the quarantine tax µQ

c . The impact is compared for
the following scenarios: contact tracing, comprehensive contact tracing and
quarantine all exposed. Welfare is expressed as the consumption equivalent
relative to the non-pandemic economy, consumption is averaged over the sim-
ulation horizon and deaths are shown as percent of the initial population.

those traced contacts who test positive. As a consequence, the importance of introducing a

furlough scheme depends on the stringency of the quarantine policy. Our analysis suggests

that a very well targeted quarantining approach considerably reduces the necessity of a

furlough scheme.

H The Stringency of Social Distancing

We now turn our attention to the stringency of social distancing, which is captured by the

consumption tax µS
c,t. For the purpose of the analysis, the tax is imposed in the first 26

periods after the outbreak of the disease and is kept constant throughout this time.

Figure H.9 shows the impact of social distancing on the contact tracing system for varying

degrees of stringency. In particular, the consumption tax, which is levied in during the first

26 periods, is increased step by step. We show the response of welfare at the onset of the

pandemic, the cumulative deaths at the end of the pandemic as well as consumption and

labor averaged over the entire horizon of 250 periods.

When no social distancing is imposed (µS
c = 0), the contact tracing technology with

a limited testing capacity alone cannot prevent the collapse of the testing system. As a
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Figure H.9: Comparison of different testing strategies under a varying stringency of so-
cial distancing. Social distancing is captured by the consumption tax µS

c,t,
which is levied in the fist 26 periods and is kept constant throughout these
periods. Welfare (expressed as consumption equivalent to the non-pandemic
economy), accumulated deaths, aggregate consumption and aggregate labor
averaged over the 250 week horizon are reported.

result, consumption and labor are lower and total deaths are higher than those in the case of

unlimited testing (the green dashed-dotted line) where, by construction, the testing system

cannot collapse. Indeed, when the social distancing stringency is set to zero (µS
c = 0), the

vertical distance between the blue solid line and the green dashed-dotted line captures the

effects of the testing system’s collapse on welfare, total deaths, aggregate consumption, and

labor. As the stringency of the social distancing policy is increased, welfare increases as

fewer people will be killed by the pandemic. However, consumption and labor fall steadily.

As the stringency of social distancing reaches the threshold µL
c = 0.18, social welfare

jumps to a higher level as the death toll of the pandemic drops sharply and consumption and

labor rise by a discrete amount. This discrete increase in welfare is due to the preservation

of the testing system achieved by social distancing.
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Social distancing, if it is sufficiently constraining, allows the government to replicate the

outcomes of the unlimited testing capacity (the green dashed-dotted line). This happens

because social distancing reduces agents’ individual consumption and labor so as to solve

the externality problem threatening the viability of the testing system. By preserving the

correct functioning of the testing system, agents can consume and work more later when more

tests are available and the infection rate does not increase. This result is reflected in the

discrete increase in consumption and employment as the stringency of the social distancing

policy is raised.

Under the comprehensive tracing technology, the viability of the testing system is not

threatened by the pandemic (the red dashed line). As a result, raising the consumption

tax monotonically lowers consumption and employment. At the same time, social welfare

slightly improves as social distancing reduces the amount of economic interactions, leading

to fewer infected cases and hence to a lower death toll.

I Additional Figures

Figure I.10: Step functions mapping consumption and labor decisions in total consumption
and labor interactions.
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Figure I.11: Probability distributions for an agent, who does not know their health status,
to meet with untested asymptomatic subjects k times. The left plot graphs
the distribution ft(k) defined in equation (22) and concerns susceptible agents,
who do not turn out to become infected in the period, untested asymptomatic
agents, and unobserved recovered agents. The right plot graphs the distribu-
tion fT

t (k) obtained by applying the Bayes theorem as shown in equation (24)
and concerns the newly infected agents. The distributions are obtained in
period 20 (blue bars) and 40 (white bars) of the simulation with a contact
tracing technology with unlimited testing capacity.
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