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2007-2008, I develop a nonlinear macroeconomic model featuring excessive leverage
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increases the crises frequency and lowers welfare. The model is taken to U.S. data to

estimate the run probability around the financial crisis of 2007-2008. The estimated run

risk was already considerable in 2005 and kept increasing. Counterfactual simulations

evaluate whether monetary interventions boost welfare and could have averted the
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1 Introduction

The financial crisis of 2007-2008 was, at the time, the most severe economic downturn in the

US since the Great Depression. Although the origins of the financial crisis are complex and

various, the financial distress in the shadow banking sector has been shown to be one of the

key factors.1 The shadow banking sector, which consists of financial intermediaries operating

outside normal banking regulation, expanded considerably before the crisis. Crucially, there

was an excessive build-up of leverage (asset to equity ratio) for these unregulated banks. The

collapse of the highly leveraged major investment bank Lehman Brothers in September 2008

intensified then a run on the short-term funding of many financial intermediaries, with very

severe repercussions for the real economy in the fourth quarter of 2008. Figure 1 documents

these stylized facts about GDP growth and shadow bank leverage.

In this paper, I build a new nonlinear quantitative macroeconomic model with financial

intermediaries and endogenous runs to capture the observed dynamics and to quantify the

build-up of financial fragility. The model features endogenous boom-bust dynamics, which

rely on the interaction among two features that correspond well to the shadow banking

sector. First, the financial intermediaries face risk-shifting incentives and volatility shocks,

which allow to account for extensive leverage accumulation similar to Adrian and Shin (2014)

and Nuño and Thomas (2017). Second, the runs on the financial sector depend on economic

and financial circumstances, as in Gertler et al. (2020b).

The boom-bust dynamics originate from a volatility paradox, in the spirit of Brunner-

meier and Sannikov (2014). A period of low volatility reduces the risk-shifting incentives of

financial intermediaries. This results in substantially elevated leverage, which implies low loss

absorbing capacities, but also boosts credit and output. An increase in volatility can then

trigger a self-fulfilling abrupt stop to the roll over of deposits, which triggers firesales and

pushes the highly levered intermediaries into bankruptcy. This run on the financial sector

causes a sharp contraction in output as observed in the great financial crisis in the fourth

quarter of 2008. Importantly, the dynamics reconcile key empirical observations concerning

financial crises since a run is preceded by a credit boom (Schularick and Taylor, 2012), low

pre-crisis credit spreads (Krishnamurthy and Muir, 2017) and elevated shadow bank leverage

as observed around 2008 (Adrian and Shin, 2010).

The model is embedded in a New Keynesian setup to study inflation dynamics and the zero

lower bound (ZLB) in connection with financial crises. Financial fragility creates extensive

downside risk for inflation. The ZLB increases the frequency and severity of financial crises

substantially because it restricts the interventions of the monetary authority during a run.

The ZLB also results in a considerable welfare loss of 0.3% in consumption equivalents.

The model is then taken to the data to obtain a structural estimate of the endogenous

build-up of financial fragility in the U.S. around the great financial crisis. However, an

estimation is very challenging because it requires to repeatedly solve the nonlinear model with

global methods and then to filter it. To overcome this challenge, I apply a two-step procedure

1See e.g. Adrian and Shin (2010), Bernanke (2018), Brunnermeier (2009) and Gorton and Metrick (2012).
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Figure 1: The upper graph shows two measures of U.S. shadow bank book leverage. The
first measure is based on balance sheet data from the Flow of Funds (left axis).
The alternative one uses Compustat data (right axis). The leverage series rely on
the book value of equity. Appendix A shows the details. The lower graph shows
the quarter-on-quarter real output growth rate in percent.

that reduces the computational burden, while still providing an estimate of financial fragility

through the lens of a structural nonlinear model. In the first step, the nonlinear model is

calibrated to key features of the U.S. and the shadow banking sector. The calibrated model

is used as input for a nonlinear filter in the second step. The filter extracts the sequence

of shocks and estimates the endogenous run probability over time conditional on the paths

of selected data (shadow bank leverage and real output growth). In particular, I employ a

particle filter to account for the nonlinear setup with endogenous financial crisis and the ZLB.

This general approach provides a model-based growth-at-risk estimate.

According to the estimation, the run probability starts to increase significantly from 2005

onwards and peaks in 2008 due to rising shadow bank leverage. The estimation selects a

run to explain the data in 2008:Q4. The run itself accounts for 70% of the severe output

drop in this period. In addition to this, the results highlight the importance of low volatility

because it causes the rise in leverage and makes the financial system prone to instability. As

an external validation, the estimated path of volatility is also compared to a data proxy.

The model and estimation lend itself for a joint welfare analysis and counterfactual sim-

ulation of monetary and macroprudential strategies. Specifically, the focus is on a monetary

policy rule that responds to the financial situation. The monetary policy response to financial
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conditions can be classified into interventions before (ex-ante) and after (ex-post) the crisis.

Monetary policy can act in advance and lean against the wind through tightening measures,

such as raising interest rates. Conversely, the ex-post component captures the monetary au-

thority committing to a loose policy after the crisis. The welfare-maximizing rule enhances

welfare by 0.6% (expressed in consumption equivalents) and succeeds in avoiding almost all

runs. Most of these gains stem from the credible ex-post commitment, while ex-ante leaning

provides only small, albeit positive, effects. To evaluate the policy, I compare it with a com-

parable macroprudential policy. Even though macroprudential policy would be preferable

from a welfare perspective, monetary policy can in some cases serve as a good substitute that

is easier to implement in practice, especially with respect to shadow banks.

Using the results from the estimation, the counterfactual paths for economic activity

and financial fragility under alternative policies can be constructed. I demonstrate that the

described welfare-maximizing rule would have mitigated the estimated build-up of financial

fragility and averted the run in 2008. This outcome, however, hinges on a credible commit-

ment to a loose ex-post policy, as ex-ante leaning alone would have not been sufficient.

Related Literature Gertler et al. (2020b) and Gertler et al. (2020a) pioneer the incorpo-

ration of self-fulfilling runs into macroeconomic models to explain financial crises.2 My paper

contributes to this literature in three ways. First, I introduce volatility shocks as a new

channel to quantify the financial crisis. This mechanism captures key macroeconomic and fi-

nancial series, in particular the build-up of leverage prior to 2008 and endogenous boom-bust

dynamics.3 Second, I outline an approach to estimate the endogenous probability of a finan-

cial crisis through the lens of a microfounded nonlinear model. Taking the model to the data,

I provide a novel nonlinear structural estimate of financial fragility around the financial crisis

in 2008. Finally, I evaluate the economic and welfare implications of monetary policy with a

special emphasis on the zero lower bound and responding to the financial situation. Combin-

ing the estimation with the policy analysis allows to show under what conditions a monetary

interventions could have avoided the run on the financial sector in 2008. Other papers that

incorporate runs into quantitative macro frameworks are Amador and Bianchi (2021), Faria-

e-Castro (2019), Ferrante (2018), De Groot (2021), Ikeda and Matsumoto (2021), Hakamada

(2021), Mikkelsen and Poeschl (2019), Paul (2020) and Poeschl (2020).4

I also contribute to the large large growing body of empirical work on growth-at-risk that

2Gertler and Kiyotaki (2015) and Gertler et al. (2016) are important preceding contributions that integrate
bank runs in the spirit of Diamond and Dybvig (1983) into standard macro models. Cooper and Corbae (2002)
is an early study with runs that can be interpreted as roll-over crises.

3The risk-shifting incentives have a very different impact on leverage compared to that of a run-away
constraint, where an intermediary can divert a fraction of assets that cannot be reclaimed, as used in Gertler
et al. (2020b). Risk-shifting incentives combined with the volatility shock generate procyclical leverage, while
leverage is normally countercyclical with the run-away constraint. The run-away constraint can be reconciled
with the evidence for credit booms that generate busts if intermediaries are overly optimistic about future
news. An alternative approach to obtain procyclical leverage is to have sticky net worth accumulation of
financial intermediaries (Ikeda and Matsumoto, 2021).

4Other approaches to capture boom-bust dynamics are asymmetric information, optimistic beliefs and
learning (e.g. Boissay et al., 2016; Bordalo et al., 2018; Boz and Mendoza, 2014). Other studies (e.g. Justiniano
et al., 2019; Guerrieri and Lorenzoni, 2017) emphasize the role of housing.
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was inspired by Adrian et al. (2019). Their work links macrofinancial conditions and the

future distribution of output growth using quantile regressions. More recently, Adrian et al.

(2020) develop a semi-structural macroeconomic model with an ad-hoc specific vulnerability

function to capture downside risk. My paper provides a novel structural empirical perspective

on growth-at-risk through the combination of a fully microfounded nonlinear model and

the particle filter. Based on the estimation, I also conduct (policy) counterfactuals on the

estimated build-up of financial fragility and the occurrence of a financial crisis.

To obtain an estimate for the probability of a financial crisis through the lens of nonlinear

model, I build on the literature that empirically assesses models with multiple equilibria. Fol-

lowing Aruoba et al. (2018), I use a particle filter (Fernández-Villaverde and Rubio-Ramı́rez,

2007) that is adapted to account for the multiplicity of equilibria.5 A considerable differ-

ence to Aruoba et al. (2018) is the nature of the sunspot shock, which helps to select the

equilibrium. While they use a Markov-switching sunspot shock to capture a switch in the

inflation environment, I rely on an iid sunspot shock to capture the one-time event of a run.

Furthermore, Bocola and Dovis (2019) use a particle filter to estimate the likelihood of a gov-

ernment default. Faria-e-Castro (2019) applies a particle filter to conduct a counterfactual

with countercyclical capital requirements in a model with bank runs.

2 Model

The setup is a dynamic stochastic general equilibrium model with a financial sector that faces

endogenous runs. It is embedded in a New Keynesian setup with a zero lower bound (ZLB).

Financial intermediaries have risk-shifting incentives based on Adrian and Shin (2014) and

Nuño and Thomas (2017), which microfounds their leverage constraint. The financial sector

occasionally faces system-wide runs, which are state-dependent, or in other words endogenous,

similar to Gertler et al. (2020b). The occurrence of a run depends jointly on fundamentals

and a self-fulfilling element. The intermediaries can be best thought of as shadow banks, as

they are unregulated and not protected by deposit insurance.6 The model featuring runs and

the ZLB is solved in its nonlinear specification with global methods.

2.1 Household

There is a continuum of identical households. The representative household consists of work-

ers and financial intermediaries that have perfect insurance for their consumption Ct. Workers

supply labor Lt and earn the wage Wt. Intermediaries die with a probability of 1 − θ and

return their net worth to the household to avoid self-financing. Simultaneously, new inter-

mediaries enter each period and receive a transfer from the household. The household owns

the non-financial firms and receives the profits. The variable Ξt captures all transfers.

5I adjust the filter to handle equilibrium probabilities that are endogenously time-varying.
6While assuming the absence of deposit insurance is a characteristic in line with shadow banks, a run could

also occur in the presence of a deposit insurance system provided that the insurance is imperfect.
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The household is a net saver and holds two different assets. The first asset are one-

period deposits Dt for which the financial intermediaries promise to pay a predetermined

gross interest rate R̄t. However, the occurrence of a run alters the intermediary’s ability to

honor its commitment. Households receive then only a fraction x⋆t , which is the recovery

ratio, of the promised return. The gross rate Rt is thus state-dependent:

Rt =

R̄t−1 if no run takes place in period t

x⋆t R̄t−1 if a run takes place in period t
(1)

The other asset are securities. I distinguish between beginning-of-period securities Kt that

are used to produce output and end-of-period securities St. The end of period securities

SHt give them an ownership in the non-financial firms. The household earns the stochastic

rental rate Zt and can trade the securities with other households as well as intermediaries at

the market price Qt. The securities of households and intermediaries, where the latter are

denoted as SBt , are perfect substitutes. Total end-of-period securities St are St = SHt + SBt .

The households are less efficient in managing capital holdings, as in the framework of

Brunnermeier and Sannikov (2014). Following the shortcut of Gertler et al. (2020b), capital

holdings are costly in terms of utility. The utility function is given as:

Ut = Et

{ ∞∑
τ=t

βτ−t
[
(Cτ )

1−σh

1− σh
− χL1+φ

τ

1 + φ
− Θ

2

(SHτ
Sτ

− γF
)2
Sτ

]}
, (2)

where Θ > 0 and γF > 0. Thus, holding a share of securities share above γF becomes

increasingly costly. The households maximize their utility subject to the budget constraint:

Ct =WtLt +Dt−1Rt −Dt + Ξt −QtS
H
t + (Zt + (1− δ)Qt)S

H
t−1. (3)

2.2 Financial Intermediaries

The financial intermediaries’ leverage decision depends on the risk-shifting incentives and

the possibility of a run on the financial system. The intermediaries face a moral hazard

problem due to risk-shifting incentives that limits their leverage. They can invest in two

different securities with distinct risk profiles. Limited liability protects the intermediaries’

losses in case of default and creates incentives to choose a strategy that is too risky from the

depositors’ point of view.7 This results in an incentive and a participation constraint for the

intermediaries’ maximization problem, which also accounts for the threat of runs.

There is a continuum of financial intermediaries indexed by j, who intermediate funds

between households and non-financial firms. The intermediaries hold net worth N j
t and

collect deposits Dj
t to buy securities SBt from the goods producers: QtS

Bj
t = N j

t +Dj
t . Their

leverage is defined as ϕjt = QtS
Bj
t /N j

t . The intermediary chooses its security and deposit

holdings to maximize the value of its franchise Vt. The maximization problem also depends

7This formulation microfounds a value-at-risk constraint - a common risk management approach for shadow
banks - and corresponds to a contracting problem from corporate finance theory. Adrian and Shin (2010)
provide evidence on the value-at-risk constraint and the leverage decision of security broker-dealers.
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on the run because the intermediary can only continue operating or return its net worth in

the absence of a run. The probability that the intermediary defaults due to a run next period

is denoted as pt, which is derived in the next subsection. The value V j
t is:

V j
t (N

j
t ) = (1− pt)E

N
t

[
Λt,t+1

(
θV j

t+1(N
j
t+1) + (1− θ)(RKt+1QtS

Bj
t −Rt+1D

j
t )
)]
, (4)

where net worth accumulates as the return on assets net the cost of deposits: N j
t =

RKt Qt−1S
Bj
t−1−RtD

j
t−1. E

N
t [·] is the expectation conditional on no run in t+1. A superscript

denotes if the expectations are conditioned on the absence (N) or occurrence of a run (R).

The intermediary maximizes Vt subject to an incentive and participation constraint due to

risk-shifting incentives, as described now. Appendix B.3 contains the formal derivation.

Risk-Shifting Incentives and Volatility After purchasing the securities, the financial

intermediary converts, at the end of the period, the securities into efficiency units ωt+1 that

are subject to idiosyncratic volatility similar to Christiano et al. (2014). The arrival of

the idiosyncratic shock is iid over time and intermediaries. The intermediary has to choose

between two different conversions - a good security ω and a substandard security ω̃ - that differ

in their cross-sectional idiosyncratic volatility. They have the following distinct distributions:

logωt = 0, and log ω̃t
iid∼ N

(
−σ2t − ψ

2
, σt

)
, (5)

where ψ < 1. σt affects the idiosyncratic volatility and is an exogenous driver specified below.

I abstract from idiosyncratic volatility for the good security so that its distribution is a dirac

delta function with ∆t(ω) denoting the cumulative distribution function. The substandard

one follows a log normal distribution, where Ft(ω̃t) is the cumulative distribution function.

The good security is superior as it has a higher mean and a lower variance due to ψ < 1:8

E(ω) = ω = 1 > e−
ψ
2 = E(ω̃), and V ar(ω) = 0 < [eσ

2 − 1]e−ψ = V ar(ω̃). (6)

However, the substandard security features a higher upside risk due to the possibility of a

large idiosyncratic shock ω̃.9 Appendix B.2 contains a graphical characterization.

The variable σt is labeled as volatility since it affects the relative cross-sectional idiosyn-

cratic volatility of the securities. In particular, it changes the upside risk, while preserving

the mean spread E(ω)− E(ω̃). Volatility σt is exogenous and follows an AR(1) process:

σt = (1− ρσ)σ + ρσσt−1 + σσϵσt , where ϵσt ∼ N(0, 1). (7)

The intermediary earns the return RK,jt on its securities that depends on the stochas-

tic aggregate return RKt and the realized idiosyncratic shock conditional on its conversion

8More formally, I assume that ∆t(ω) cuts Ft(ω̃) once from below to ensure this property. This means that
there is a single ω∗, such that (∆t(ω)− F̃t(ω))(ω − ω∗) ≥ 0 ∀ω.

9Ang et al. (2006) find empirically that stocks with high idiosyncratic variance have low average returns.
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choice. While the return for the good type RKjt = ωjtR
K
t = RKt is independent of the

idiosyncratic shock, the shock affects the return for the substandard type RKjt = ω̃jtR
K
t .

The aggregate return depends on price Qt and the profits per unit of effective capital Zt:

RKt = [(1− δ)Qt + Zt]/Qt−1. Based on this, a threshold value ωjt for the idiosyncratic shock

defines when the intermediary can exactly cover the face value of the deposits:

ωjt = (R̄t−1D
j
t−1)/(R

K
t Qt−1S

Bj
t−1). (8)

As it stands so far, the financial entities would choose to invest in the good security

as it has a higher mean and lower variance. However, limited liability protects the financial

entities, which distorts the choice between the securities. If the realized idiosyncratic volatility

is below ωjt , the financial intermediary declares bankruptcy. The households seize then all

assets, but they do not receive the promised repayment. This limits the downside risk of the

substandard security, while the upside risk is unaffected. The gain from limited liability is:

π̃jt =

∫ ωjt+1

(ωjt+1 − ω̃)dFt(ω̃) > 0. (9)

In contrast to this, the gain from limited liability due to idiosyncratic risk is zero for the good

technology. This creates a trade-off between the good securities’ higher mean return versus

the gains from limited liability for the substandard security.

To ensure an investment in the good security, the intermediary faces an incentive con-

straint that deals with the risk-shifting incentives resulting from limited liability. The incen-

tive constraint ensures that the good security is the only equilibrium choice.10 The constraint

limits the leverage of the intermediaries to force them to have enough “skin in the game”

because the gain from limited liability increases in leverage. The microfoundation behind the

leverage constraint is very different to the incentive constraint in Gertler et al. (2020b) and

the collateral constraint in Jermann and Quadrini (2012). One crucial strength is that this

financial friction in combination with the volatility shock accounts for procyclical leverage

dynamics and other key empirical observations concerning financial crises, as shown later.

The incentive constraints is as follows, as derived in Appendix B.3:

(1−pt)ENt Λt,t+1R
K
t+1(θλ

j
t+1+(1−θ))[1−e

−ψ
2 −π̃jt+1] ≥ ptE

R
t Λt,t+1R

K
t+1(e

−ψ
2 −ωjt+1+π̃

j
t+1),

(10)

The LHS shows the trade-off between the higher mean return (1− e
−ψ
2 ) and the upside risk

π̃jt+1. This is the relevant consideration if there is no run next period. The RHS displays an

additional gain of investing in the substandard security in case of a run. The substandard

security offers the possibility to have positive net worth despite a run if the realized shock

satisfies ω̃it > ωt.
11 λjt is the multiplier on the participation constraint, which is derived next.

10This also implies the absence of idiosyncratic default in equilibrium. However, the risk-shifting is not
affected by the choice to not have idiosyncratic default in equilibrium. In that regard, idiosyncratic default in
equilibrium, as e.g. in Ferrante (2019) or Nuño and Thomas (2017), can be seen as an additional element.

11Investing in substandard securities is an outside equilibrium strategy, which allows financial intermediaries
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The return on deposits needs to be sufficient such that households provide deposits to

the intermediaries. While the households earn the predetermined interest rate R̄t in normal

times, the households recovers the gross return of the securities if a run takes place. As the

return in a run is lower, an increase in pt augments the funding costs to compensate for the

run risk. The participation constraint can be written as:

(1− pt)E
N
t [βΛt,t+1R̄

D
t D

j
t ] + ptE

R
t [βΛt,t+1R

K
t+1QtS

Bj
t ] ≥ Dj

t . (11)

Both constraints are assumed to be binding in equilibrium. This implies for their respec-

tive multipliers κt > 0 and λt > 1 in all periods. I verify these assumptions numerically using

a simulation and show that these conditions are satisfied in more than 99.5% periods.12

Aggregation The participation and incentive constraint do not depend on intermediary-

specific characteristics so that the optimal choice of leverage is independent of net worth as

shown in Appendix B.3. Therefore, I can sum up across individual intermediaries to obtain

the aggregate values. Their asset demand depends on leverage and net worth: QtS
B
t = ϕtNt.

The net worth evolution is as follows. In the absence of a run, surviving intermediaries

retain their earnings. A run eradicates the net worth of the surviving intermediaries (NS,t =

0), so that they stop operating. New intermediaries, which receive their net worth NN,t as a

transfer from households, enter each period (independent of a run taking place or not):

NS,t = max{RKt QtSBt−1 −RDt Dt, 0}, and NN,t = (1− θ)ζSt−1. (12)

Aggregate net worth Nt is given as Nt = θNS,t +NN,t.

2.3 Endogenous Runs and Multiple Equilibria

There are occasional runs, in which depositors stop rolling over their deposits. Importantly,

the possibility of such a run is endogenous because the existence of this equilibrium depends on

economic circumstances, following Gertler et al. (2020b). In these states, the model features

multiple equilibria in the spirit of Diamond and Dybvig (1983). The multiplicity of equilibria

originates from heterogeneous asset demand of households and intermediaries.13 During

normal times households roll over their deposits. Financial intermediaries and households

demand securities and the market clears at the fundamental price Qt. The intermediary can

cover the promised repayments for Qt, that is [(1− δ)Qt + Zt]S
B
t−1 > R̄t−1Dt−1.

In contrast to this, a run wipes out the entire existing financial sector, so that NS,t = 0.

Households cease to roll over their deposits in a run, forcing intermediaries to liquidate their

entire assets to repay the households. However, this eliminates their demand for securities.

to survive a run in the event of a very high realization of the idiosyncratic shock. It is assumed that the
surviving intermediaries repay their depositors fully and return their remaining net worth to the households.

12The reason for these rare violations is that the intermediaries accumulate too much net worth. This
could be addressed, for instance, by allowing for state-dependent dividend payments. The payments could
be modeled as an occasionally binding constraint similar to the equity injections of Gertler et al. (2020a).
Appendix B.3.3 contains more details and shows the dynamics of the multipliers in a boom-bust scenario.

13There is no explicit distinction between households and typical lenders on the wholesale market.
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Households plus the newly entering financial intermediaries are the only remaining agents to

buy the securities. Subsequently, the asset price falls to clear the market at a firesale price.

The drop is particularly severe because it is costly for households to hold large amounts of

securities. This firesale price Q⋆t depresses the potential liquidation value of intermediaries’

securities. The run can then occur in the first place if the intermediaries do not have sufficient

means to cover the claims of the households under Q⋆t . This is the case if the recovery ratio

x⋆t , that is the firesale liquidation value relative to the promised repayments, is below 1:

x⋆t ≡
[(1− δ)Q⋆t + Z⋆t ]S

B
t−1

R̄t−1Dt−1
< 1. (13)

The recovery ratio x⋆t partitions the state space into a safe region without runs (x⋆t ≥ 1)

and a fragile region with multiple equilibria (x⋆t < 1). Appendix B.4 contains more details

and a graphical characterization. There is also a third scenario, in which the intermedi-

aries cannot repay the depositors even under the fundamental price, which is the case if

[(1− δ)Qt + Zt]S
B
t−1 < R̄t−1Dt−1. While this third case is accounted and checked for, this

scenario is neglected because its probability is infinitesimally small in the quantitative model.

If there exists multiple equilibria, a sunspot shock selects the equilibrium, following Cole

and Kehoe (2000).14 The sunspot ιt takes the value 1 with probability Υ and 0 with prob-

ability 1 − Υ . A run takes place if ιt = 1 and x⋆t < 1 is jointly the case. If x⋆t > 1, then

the sunspot shock has no impact on the equilibrium choice. Taken together, the probability

for a run in period t+ 1 is endogenous because it depends on the probability of being in the

crisis region in t+ 1 and of drawing a sunspot shock:

pt = prob(x⋆t+1 < 1)Υ. (14)

2.4 Production, Monetary Policy and Resource Constraint

The non-financial firms sector consists of intermediate goods producers, final goods producers

and capital goods producers. The central bank follows a Taylor rule with a ZLB.

There is a continuum of competitive intermediate goods producers. The representative

producer produces the output Yt with labor Lt and working capital Kt as input: Y j
t =

At(K
j
t−1)

α(Ljt )
1−α. At is total factor productivity (TFP), which follows an AR(1) process.

The firm pays the wage Wt to the households. The firm purchases in period t− 1 capital

St−1 at the market price Qt−1. The firm finances the capital with securities SBt−1 from the

financial sector and the households SHt−1, so that Kt−1 = SHt−1 + SBt−1. The intermediate firm

pays the state-contingent return RK,t. After using the capital in period t for production, the

firm sells the undepreciated capital at the market. The intermediate output is sold at price

Mt, which turns out to be equal to the marginal costs φmc. The firm problem is given as:

max
Kt−1,Lt

∞∑
i=0

βiΛt,t+i
(
Mt+iYt+i +Qt+i(1− δ)Kt−1+i −Rkt+iQt−1+iKt−1+i −Wt+iLt+i

)
.

14An alternative way could be global games, as used in Ikeda and Matsumoto (2021).
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The final goods retailers buy the intermediate goods and transform them into the final

good using a CES production technology:

Yt =

[∫ 1

0
(Y j
t )

ϵ−1
ϵ df

] ϵ
ϵ−1

. (15)

The price index and intermediate goods demand are given by:

Pt =

[∫ 1

0
(P jt )

1−ϵdf

] 1
1−ϵ

, and Y j
t =

(
P jt /Pt

)−ϵ
Yt. (16)

The final retailers are subject to Rotemberg price adjustment costs:

Et

{ T∑
i=0

Λt,t+i

[(P jt+i
Pt+i

− φmct+i

)
Y j
t+i −

ρr

2
Yt+i

( P jt+i

ΠP jt+i−1

− 1
)2]}

, (17)

where Π is the inflation target of the monetary authority.

Competitive capital goods producers produce new end of period capital using final goods.

They create Γ(It/St−1)St−1 new capital out of an investment It, which they sell at price Qt:

max
It

QtΓ (It/St−1)St−1 − It, (18)

where the functional form is Γ(It/St−1) = a1(It/St−1)
1−η + a2. The FOC gives a relation for

the price Qt. The law of motion for capital is St = (1− δ)St−1 + Γ (It/St−1)St−1.

The monetary authority sets the interest rate RIt using a Taylor Rule subject to the ZLB:

RIt = max

{
RI
(
Πt
Π

)κΠ (φmct
φmc

)κy
, 1

}
, (19)

where deviations of marginal costs from its deterministic steady state φmc capture the output

gap.15 To connect this rate to the household, there exists one-period bond in zero net supply

that pays the riskless nominal rate RIt . The associated Euler equation reads as follows:

βΛt,t+1R
I
t /Πt+1 = 1. The resource constraint is Yt = Ct + It + G + ρr

2 (Πt/Π − 1)2Yt, where

G is government spending. The equilibrium description can be found in Appendix B.1.

2.5 Multiple Equilibria, ZLB and Global Solution Method

The model features an occasionally binding constraint and multiplicity of equilibria. The

main focus is on the role of multiplicity that is generated by runs. The occasionally binding

constraint originates from the ZLB. On top of that, the ZLB introduces many equilibria such

as the targeted-inflation equilibrium, deflation equilibria as well as sunspot equilibria (see

Benhabib et al., 2001; Aruoba et al., 2018). This paper focuses on the targeted-inflation

equilibrium, in which inflation fluctuates around the central bank’s inflation target.

The model is solved with global methods, specifically policy function iteration, to account

15The model could be extended to assess negative interest rates, e.g. following Darracq Pariès et al. (2020).
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for all nonlinear features. Within the class of policy function iteration methods, I use time

iteration with linear interpolation, as Richter et al. (2014). Additionally, I use a piecewise

representation of the policy functions to account for the multiplicity of equilibria generated by

the runs on the financial sector in the spirit of Aruoba et al. (2018) and Aruoba et al. (2021).

In particular, the numerical approximation of the policy functions has distinct functions for

the run equilibrium and the no run equilibrium, which allows to locate the run equilibrium

with a high precision. The details of the numerical solution are left to Appendix C.

3 Model Dynamics: Volatility, Endogenous Runs and the ZLB

This section explains how the model is mapped to the data and analyzes the dynamics.

3.1 Model Parameterization and Selected Key Moments

The emphasis of the calibration is on the recent financial crisis in the U.S. and the shadow

banking sector. The financial sector variables and shock processes are set to match selected

moments, while the conventional parameters are chosen based on the literature. The focus is

mostly on quarterly data from 1985:Q1 to 2014:Q4 to accommodate the changing regulation of

shadow banking activities. The starting point coincides with major changes in the contracting

conventions of the repurchasement agreement (repo) market - an important source of funding

for shadow banks - that took place after the failure of a number of dealers in the early

1980s (Garbade, 2006). It also captures the period after the Great Inflation. After the

financial crisis, new regulatory reforms such as Basel III and the Dodd-Frank overhauled the

financial system, suggesting to end the sample a few years after 2008. Table 1 summarizes

the calibration and the match with targeted moments in the data.

The discount factor is set to 0.9975, which corresponds to a low rate environment with

an annualized long-run real interest rate of 1%. The Frisch elasticity is set to match an

elasticity of 0.75. Risk aversion is parameterized to 1. TFP A normalizes output to 1 in the

deterministic steady state (DSS). Government spending G is 20% of total GDP in the DSS.

The production parameter α matches a capital income share of 33%. The depreciation rate

is 10% annually. The price elasticity of demand is set to 10. The Rotemberg adjustment

costs correspond to a five-quarter average duration of resetting prices in the related Calvo

framework. The elasticity of the asset price ρr is 0.25. The parameters of the investment

function normalize the asset price to Q = 1 and the investment Γ(I/K) = I in the DSS.

Monetary policy responds to deviations of marginal costs (κy = 0.125) and inflation (κπ =

2.0), where the target inflation rate is normalized to 2% per annum.

The parameters related to the financial sector and the shock processes are set to target

selected moments of the shadow banking sector, the frequency of financial crises and the

dynamics of output. The financial sector represents the shadow banking sector. Specifically, I

define these as entities that rely on short-term deposits that are not protected by the Federal
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a) Conventional Parameters Value Target / Source

Discount factor β 0.9975 Risk free rate = 1.0% p.a.
Frisch labor elasticity 1/φ 0.75 Chetty et al. (2011)
Risk aversion σH 1 Log utility for consumption
TFP level A 0.407 Output = 1
Government spending G 0.2 Govt. spending to output = 0.2
Capital share α 0.33 Capital income share = 33 %
Capital depreciation δ 0.025 Depreciation rate = 10% p.a.
Price elasticity of demand ϵ 10 Markup = 11%
Rotemberg adjustment costs ρr 178 Calvo duration of 5 quarters
Elasticity of asset price ηi 0.25 Bernanke et al. (1999)
Investment Parameter 1 a1 0.530 Asset Price Q = 1
Investment Parameter 2 a2 -.008 Γ(I/K) = I
Target inflation Π 1.005 Inflation Target of 2%
MP response to inflation κπ 2.0 Standard
MP response to output κy 0.125 Standard

(b) Financial Sector & Shocks Value Moment Data Model

Parameter asset share HH γF 0.33 Share shadow banking sector 33% 35%
Mean Substandard Security ψ 0.01 Mean shadow bank leverage 15.5 15.5
Intermediation cost HH Θ 0.04 Financial crisis probability 2.0% 1.9%
Survival rate ζ 0.88 Mean credit spread 2.3% 3.0%
Persistence volatility ρσ 0.96 Persistence of leverage 0.96 0.95
Std. dev. volatility shock σσ 0.0031 Std. dev. of leverage 3.0 2.9
Persistence TFP ρA 0.95 Persistence TFP 0.95 0.95
Std. dev. TFP shock σA 0.0026 Std. dev. of output growth 0.6 0.5
Sunspot Shock Υ 0.50 Output drop during run 2.8% 2.8%

Table 1: Calibration and Targeted Moments

Deposit Insurance Corporations and do not have access to the FED’s discount window.16

The share of total assets held directly by the shadow banking sector was 37.1% in 2006 and

dropped to 28.3% in 2012, as shown by Gallin (2015). Thus, the parameter γF specifies

that the shadow banking sector holds 33% of total assets on average. The leverage measure

combines balance sheet data from security broker dealers and finance companies using the

U.S. Flow of Funds data, as discussed in Appendix A. The leverage series relies on book

equity, which is the difference between the market value of the portfolio and the liabilities.17

The return of ψ = 0.01 for the substandard security is used to target a mean leverage ratio

of 15.5. The intermediation costs Θ are set to match an annual run probability of 2.0%

(every 50 years on average). This moment is based on the historical database of Jordà et al.

16This definition applies to the following entities: Money market mutual funds, government-sponsored
enterprises, agency- and GSE-backed mortgage pools, private-label issuers of asset-backed securities, finance
companies, real estate investment trusts, security brokers and dealers, and funding corporations.

17An alternative measure is the intermediaries’ market capitalization, as emphasized in He et al. (2010) and
He et al. (2017). However, the appropriate concept here is book equity (net worth) since the run depends on
it. Market capitalization would be relevant for the issuance of shares or acquisitions (Adrian et al., 2013).
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(2017), in which the crisis probability is around 2.7% for the U.S. and 1.9% for a sample

of advanced economies since World War II. The survival rate θ is set such that the finance

premium targets an average spread of 2.3% as observed between the BAA bond yield and a

10 year Treasury bond. The start capital parameter ζ is implied from the other parameters.

The volatility shock’s persistence ρσ and standard deviation σσ are set to match its

counterpart for shadow bank leverage. The standard deviation of the TFP shock σA targets

the standard deviation of real quarterly GDP growth. The persistence is aligned with the

persistence of the TFP series of Fernald (2014). Finally, the sunspot shock materializes with

a probability of 50% to help to match the demeaned GDP growth of -2.8% in 2008:Q4.

3.2 Financial Crises Dynamics: Endogenous Runs, Volatility and Leverage

The model enables to study the vulnerability to a financial crisis. In particular, I evaluate

how the combination of the volatility shock and the risk-shifting incentives can account for

the key empirical observations that a financial crisis is preceded by a credit boom (Schularick

and Taylor, 2012), low pre-crisis credit spreads (Krishnamurthy and Muir, 2017) and elevated

shadow bank leverage as observed around 2008 (Adrian and Shin, 2010).

Figure 2 shows the impulse response of the economy to a sequence of volatility shocks.

Starting from the steady state, one-standard-deviation negative shocks hit the economy in

period 1 until period 8. The reduction in volatility lowers the risk-shifting incentives so

that intermediaries increase leverage and extend their security holdings. This results in a

credit boom and boosts output. The finance premium also falls. To capture the increase in

financial fragilities during a boom, the leverage dynamics are key. The run probability does

initially not respond because leverage is still rather low and the economy is still in the safe

zone. However, once leverage increases further, the run probability rises considerably. The

intermediaries have too low equity buffers to cover potential large losses from a run.

During the ongoing boom, the economy is hit by a two-standard-deviation positive volatil-

ity shock in period 9. This realization pushes the highly levered economy into the fragile

region, as shown by a recovery ratio below 1. It is important to note that a large contrac-

tionary shock is necessary to push the economy in the fragile zone. If then the sunspot shock

materializes simultaneously, a run on the financial sector occurs. Depositors stop to roll over

their deposits so that intermediaries, which are forced to sell the securities at a firesale price,

do not have enough equity to cover their losses. While the solid line shows a scenario with

a sunspot shock and thus a run in period 9, the dashed line shows a credit boom without a

run. The run results in a severe drop in output, increase in the finance premium and also a

substantial fall in inflation. The economy also faces the ZLB during the run. This feature

will be explored in Section 3.3. Finally, leverage is quite high in the run period, exceeding

the prediction in the data. The returns for new intermediaries is very large so that they lever

up. While this is a common problem in the literature, the model already better aligns with

the data. As seen later, the model can actually track the leverage data in the estimation.

The reason for the boom-bust dynamics is the leverage-constraint via risk-shifting incen-
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Figure 2: The role of volatility for a credit boom with a run. The simulation shows the
impulse responses for a sequence of volatility shocks. The economy is initially at
its stochastic steady state (SS). From period 1 until period 8, the economy is hit
by a one-standard-deviation negative volatility shock in every period. In period
9, a two-standard-deviation positive volatility shock materializes. Afterwards, no
more shocks occur. The scenario is shown for two cases: a) a boom with a run,
which implies that the sunspot shock occurs in period 9 (blue solid line); b) a
boom without a run, which implies that the sunspot shock does not materialize
in period 9 (red dashed line). The scales are either percentage deviations from
the stochastic SS (%∆), annualized percent (% (p.a.)) or percent (%).

tives, which provides procyclical leverage dynamics. On the contrary, an incentive constraint,

which generates countercyclical leverage, can not reconcile these boom-bust dynamics.

While extensive leverage raises the vulnerability to a run, the relationship is complex

and highly nonlinear. If leverage is below some varying threshold value, which depends on

the economic state, the run probability is zero. Once leverage increases above the threshold,

then the run probability starts to respond nonlinearly. Additionally, the same level of leverage

can result in different run probabilities depending on the economic circumstances. Thus, the

relationship is not mechanic, and leverage alone is not a sufficient statistic to get the mapping
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to the probability of a run. Appendix D provides more details on this relationship.

The next step is to show that the discussed dynamics also represent a typical financial

crisis in the model. I conduct an event analysis around a financial crisis, which is based

on a simulation over 500,000 periods with 2, 384 runs. Figure 3 displays the run dynamics

using an event window approach, where the window contains the path for ten quarters before

and after a run. The dynamics are very similar as before, as shown for output for instance.

The median run probability peaks in the period before the run with a median value of 5%,

corresponding to a substantial 20% in terms of an annualized rate. At the same time, the

upper bound of financial fragility is limited as it peaks around 10%. Agents’ awareness of

potential runs endogenously limits the leverage of the financial sector, preventing scenarios

with an excessive run probability. Furthermore, the economy sometimes returns back to the

safe zone without a crisis, aligning with the observation that not every boom ends in a bust

(Gorton and Ordonez, 2020).

3.3 The Role of the Zero Lower Bound

The previous simulations have shown that the ZLB restricts the level of potential interest rate

cuts during a financial collapse. Consequently, the ZLB can be an important amplification

mechanism for financial fragility in a low rate environment.

To investigate this connection, I compare the run frequency and the run dynamics of

the economy with and without the ZLB. The annual probability of a financial crisis drops

significantly from 1.9% to 0.8% in the absence of the ZLB. This key moment emphasizes the

relevance of the ZLB. The dynamics for the run itself are shown in Figure 3, which compares

an economy with a ZLB (blue solid) and without a ZLB (red dashed). Due to the ZLB,

the output fall is more severe, e.g around 0.6 percentage points in the initial run period.

While the threat financial crisis is associated with a strong downside risk in inflation - as also

empirically found in López-Salido and Loria (2020) - the ZLB exacerbates the downside risk

of inflation even further. The fall in inflation is much more severe. Furthermore, the threat

of encountering the ZLB creates deflationary pressure in periods of high financial fragility.

This constitutes a further deflationary channel of the lower bound, in addition to the one

which has already been studied in the literature, as e.g. in Bianchi et al. (2021).

A welfare comparison between the economy with and without the ZLB allows to capture

the total costs of the interaction between the ZLB and endogenous runs. Welfare is measured

as the utility of representative household, as in equation (2). The welfare gains of not having

the ZLB correspond to 0.32% in consumption equivalents. In other words, agents would be

willing to give up 0.32% of their consumption in each period to avoid facing the ZLB. These

costs are substantial, especially considering that runs are rare events.

4 Estimation of Financial Fragility

I estimate the build-up of financial fragility around the financial crisis in 2008.
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Figure 3: Event window around run episodes for an economy with and without a ZLB. Based
on a simulation of 500,000 periods, the median path (blue solid) and the 68% as
well as 90% confidence intervals of all runs are displayed ten quarters before and
after a run in period 0 for the economy with the ZLB. For the economy without
the ZLB, only the median is displayed. The scales are either percentage deviations
from the simulated mean (%∆), annualized percent, or percent.

4.1 Estimation Approach, Particle Filter and Data

The model is taken to the data to obtain a structural estimate of the endogenous build-

up of financial fragility and economic downside risk in the U.S. around the great financial

crisis. However, an estimation is very challenging because it requires to repeatedly solve the

nonlinear model with global methods and then to filter it. The time to solve and filter the

model only once is around 2h55m using an Intel Xeon W-2295 processor with 18 cores.

To overcome this challenge, I apply a two-step procedure for the estimation. In the

first step, the nonlinear model is calibrated to key moments, as already done in Section

3.1. Targeting key moments in the calibration results in a model that is well equipped to be

taken to the data, while lowering the number of times that the model needs to be solved. The

calibrated model is then used as input for the particle filter in the second step. The estimation

strategy employs a particle filter to account for the nonlinear setup with endogenous runs and

the ZLB. The filter retrieves the sequence of the shocks including the sunspot shock using the

parameterized model. This sequence can, in turn, be used to obtain other objects of interest

such as the estimated probability of a run. Importantly, this approach provides an estimate

of financial fragility, while reducing the computational burden significantly.

I adapt the particle filter to specifically take into account the multiplicity of equilibria

similar to Aruoba et al. (2018).18 To account for endogenous runs, I extend their approach

to handle not only multiplicity of equilibria, but also the state-dependence of the equilibria

probabilities. The filter estimates the hidden states and shocks based on a set of observables.

18The filter algorithm is also based on Atkinson et al. (2020) and Herbst and Schorfheide (2015).
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It is convenient to cast the model in a nonlinear state-space representation as a starting point:

Xt = f(Xt−1, vt, ιt), and Yt = g(Xt) + ut. (20)

The first set of equations contains the transition equations that depend on the state variables

Xt, the structural shocks vt and the sunspot shock ιt. In particular, the state variables

and shocks determine endogenously the selected equilibrium of the model. The nonlinear

functions f are obtained from the model that is solved with time iteration. The second set

of equations contains the measurement equations, which connect the state variables with

the observables Yt. It also includes an additive measurement error ut.
19 The particle filter

extracts a sequence of conditional distributions for the structural and sunspot shocks, which

provides the empirical implications of the model. Thereby, the filter evaluates when a run

occurs and provides the run probability. The algorithm is laid out in Appendix E.

The considered horizon stretches from 1985:Q1 to 2014:Q4. The observables are real GDP

growth and shadow bank leverage, as used in the calibration. The observation equation is:[
Output Growtht

Leveraget

]
=

[
100 ln

(
Yt
Yt−1

)
ϕt

]
+ ut, (21)

where GDP growth is quarterly and demeaned. The measurement error is ut ∼ N(0,Σu).

Its variance Σu is set to 25% of the sample variance, similar to Gust et al. (2017). Appendix

F.1 establishes that the filtered model captures the fluctuations in the observables.

4.2 Results

Leverage increases substantially prior to the financial crisis. The peak comes in 2008:Q1, with

leverage close to 24. The filtered path also takes account of the strong decrease in output

and leverage in the fourth quarter of 2008. Crucially, the model can account for this sharp

drop in the fourth quarter of 2008 via two different channels: a run on the financial sector

or large contractionary shocks. As the equilibria are not exogenously imposed, the particle

filter selects the regime depending on the fit with the data. This gives an assessment if a run

took place. The model clearly favors a run. The filter assigns a weight of 98% to a run in

2008:Q4, while the weight of the run regime is almost 0% in all other periods.

Bernanke (2018) and Gorton and Metrick (2012) argue that the run on the financial sector

is behind the sharp and large economic contraction. To assess this through the lens of the

model, a counterfactual shown in Figure 4 compares the estimated path to a hypothetical

scenario without a run (no sunspot shock in 2008:Q4). The main take-away is that the

contraction would have been much smaller since the run alone accounts for 70% of the drop.

Figure 5 shows the filtered series for key variables. The estimation predicts a credit boom

gone bust, a countercyclical finance premium and a period of low inflation after the run, which

19The particle filter requires a measurement error to avoid a degeneracy of the likelihood function. Another
advantage is that it can take into account noisy data, which might be a concern for shadow bank leverage.
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Figure 4: Comparison of baseline estimate to a counterfactual scenario without a run. The
baseline median (blue line with its 68% confidence interval) is compared to the
counterfactual median, where no sunspot shock materializes in 2008:Q4.

is line with the empirical evidence. The dynamics of volatility and TFP allow to inspect the

economic drivers behind the run in 2008:Q4. A series of shocks reduces volatility σt prior to

the financial crisis. In the spirit of the volatility paradox, this period sows the seed of a crisis

as leverage and financial fragility increase. In 2008:Q4, contractionary volatility and TFP

shocks in combination with a sunspot shock trigger the run.

The approach provides a novel model-implied estimate of financial fragility. Figure 6

shows the path of the estimated run probability pt. While there is a slight increase around

1998, fragility starts to surge from 2005 onwards considerably. Thus, the model suggests that

there had already been a substantial build-up of fragilities a few years prior to the outbreak

of the financial crisis. The median one-quarter-ahead forecast peaks in 2007:Q4 at around

8%, which is more than 25% in annualized terms. Note that the run probability is going

down in shortly before the run as the level of leverage is slightly lower than at its peak.

A counterfactual analysis can disentangle the structural sources of financial fragility. The

estimated series of TFP and volatility are evaluated in isolation by setting the other shock

to zero for the entire horizon. While the volatility shock is the main driver, explaining most

of the fragility in 2008, TFP causes no financial fragility. But, there are relevant nonlinear

interaction between the shocks that can increase or decrease financial fragility. Importantly,

financial fragility induces substantial macroeconomic downside risk. In fact, the multiplicity

of equilibria due to the run characterizes macroeconomic risk as a multimodal distribution

as in the empirical papers of Adrian et al. (2021), Caldara et al. (2021) and Mitchell et al.

(2021). Appendix F.4 elaborates more on tail risk and multimodality.

As external validation, I compare the model-implied filtered volatility series with a data

proxy taken from Nuño and Thomas (2017). The key result is that both series comove most

of the time. More details are in Appendix F.2. I also include three alternative specifications.
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Figure 5: Filtered median with its 68% confidence interval for selected variables. The first
plot shows the regime selection. The second and third plot show the exogenous
drivers volatility and TFP. The remaining plots show other key variables. Note
that for the third plot the weight of the run regime is shown. The red line indicates
the fourth quarter of 2008. The scales are either percentage deviations from the
stochastic SS, deviations from the stochastic SS measured in the unconditional
variance of the variables for the two shocks, annualized percent, percent, or the
level.

First, I include the credit spread as additional observable in the observation equation. One

advantage of the particle filter is that it can handle more observables than shocks. Second, I
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Figure 6: Figure shows the filtered median run probability pt for t+1 with its 68% confidence
interval measured in percent (%). To disentangle the impact of the structural
shocks, the realizations of the volatility shock and TFP shock are set to 0 one at
a time. The dashed green line and black dash-dotted line show the scenario using
only the extracted volatility shocks and TFP shocks, respectively. The red line
indicates the fourth quarter of 2008.

use a lower measurement error of 10% for the particle filter. The dynamics are quite similar

for both checks. Importantly, the estimated probability of a run still predicts a strong build-

up before 2008 and that the run itself occurred in 2008:Q4. The third check is a scenario, in

which no shocks hit the economy after 2009. The details are in Appendix F.3.

5 Monetary and Macroprudential Policies

There is an active debate about the costs and benefits of alternative monetary and macro-

prudential policies. I provide a novel perspective through the lens of the nonlinear model.

5.1 Monetary Policy and Financial Stability

Monetary policy can respond to financial conditions, which can be distinguished in interven-

tions before (ex-ante) and after (ex-post) the crisis. Monetary policy can act in advance and

lean-against-the-wind by raising rates during a boom. The second element is that monetary

policy can commit to respond after the crisis by being more loose to “clean up”. To begin

with, the considered monetary policy rule features both elements. The central bank responds

deviations of the level of security holdings relative to a target value. The monetary rule

responding to financial conditions can be expressed as:

RIt = max

{
RI
(
Πt
Π

)κΠ (φmct
φmc

)κy (SBt
SB

)κs
, 1

}
, (22)
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Figure 7: The figure shows the impact of varying the response of monetary policy with
financial stability considerations (κs) on welfare (left axis) and the annual run
probability (right axis). The dashed black line indicates the welfare-maximizing
rule (κopts ).

where κs is the response to deviations from the target value SB. The target value SB is set

to the median level of the intermediaries’ security holdings in the baseline economy.

The financial stability and welfare impact is theoretically ambiguous. A rate hike during

a boom can lead to a substitution towards more equity. The hike also reduces total securities

and lowers the intermediaries’ share of securities, resulting in enhanced financial resilience.

At the same time, the increased funding cost due to higher rates can also result in less loss

absorbing capacities, creating financial fragility. A rate cut during or after a run can stabilize

the economy. If the central bank can credibly commit to a loose policy stance ex-post, such a

commitment can even alter the existence of the run equilibrium. However, this commitment

can also incentivize risk-taking and the accumulation of assets in the first place.

The welfare impact of this rule is illustrated in the upper plot of Figure 7, where the

response strength (κs) is varied. The welfare-maximizing rule, located at κopts = 0.0102,

implies a substantial welfare gain of 0.57% in terms of consumption equivalents. The optimal

rule is so effective that it reduces the run frequency to nearly zero.20 Initially, a higher κs

increases welfare because the monetary interventions reduce the financial risk. However, the

gains start to reverse after reaching the peak at κopts . Raising κs further results in a too large

accumulation of total securities, which makes the economy again more prone to runs and

lowers welfare. This creates a hump-shaped welfare curve.

While the rule succeeds in increasing financial stability and welfare, the source is not yet

explored. Does the financial gain stem mostly from leaning-against-the-wind or a credible

commitment ex-post? To shed light on this, I analyze the ex-ante and ex-post interventions

20The model does not include some shocks (e.g. markup), which could reduce κopts and the rule’s impact.
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separately. I model leaning-against-the-wind in advance as:

RIt = max

{
RI
(
Πt
Π

)κΠ (φmct
φmc

)κy [
1SBt >SB

(
SBt
SB

)κs
+
(
1− 1SBt >SB

)]
, 1

}
, (23)

where 1SBt >SB is an indicator function that is equal to one when intermediaries’ security

holdings are above target (StB > SB). In this specification, the monetary authority only

raises rates in response to financial stability consideration.21

The commitment to a loose policy ex-post is modeled analogously as:

RIt = max

{
RI
(
Πt
Π

)κΠ (φmct
φmc

)κy [
1SBt <SB

(
SBt
SB

)κs
+
(
1− 1SBt <SB

)]
, 1

}
, (24)

where the indicator functions captures now that the securities are below target (SBt < SB).

To analyse the impact of the different components, Table 2 compares the welfare, financial

stability and economic outcomes for various rules. The baseline MP rule (column 1) repre-

sents the scenario, in which the monetary authority only responds to inflation and output

deviations. The modified monetary policy that responds to financial conditions is shown in

column 2. The parameter κs is set to its welfare maximizing value. I then dissect the rule

in its ex-ante and ex-post interventions using the same value for κs. While the impact of

ex-ante leaning in isolation is shown in column 3, the credible ex-post commitment to loose

monetary policy is displayed in column 4.

There are two key results from the analysis. First, leaning-against-the-wind has a small,

albeit positive, impact on financial stability and welfare. When the central bank only leans

against the wind by raising rates, the run probability is slightly reduced to 1.80% (from

1.91%) and welfare increases by 0.05% in terms of consumption equivalents. It also has a

rather small effect on the mean and standard deviation of most variables. In contrast to this,

a credible commitment to loose policy ex-post provides a very large substantial and basically

explain almost all of the welfare gains, as can be seen when comparing column 2 and column

4. However, this requires a credible commitment from the central bank. This finding relates

to Devereux et al. (2019), who show in the context of sudden stops the gains of having the

ability to credibly commit to ex-post policies. Appendix G.1 includes robustness checks for

the results related to the ex-ante and ex-post components that underline the main findings.

The impact of the ex-ante leaning policy is limited, albeit positive, in the model, while

the empirical study of Schularick et al. (2021) even suggests that rate hikes may actually

increase crisis risk. To delve deeper, I also examine how an unanticipated monetary policy

shock affects financial stability during a boom. The key take-away is that a trade-off between

triggering a crisis in the short-term versus financial stability gains in the medium-term, which

is also supported empirically by Ajello and Pike (2022). Appendix G.2 contains the details.

21One challenge with implementing this policy is that the solution procedure can easily explode. To solve
the model with an interestingly strong leaning component, the ex-ante leaning component is only imposed at
the relevant parts of the state space. The details are in Appendix G.1.
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Table 2: Welfare, financial stability and economic outcomes of various policies

Baseline Modified MP Leaning Loosening Leverage

MP rule rule (κopts ) ex-ante ex-post tax (τ opts )

Selected key moments

Welfare W (CE)a − 0.56 0.05 0.52 0.64
Run Probabilityb 1.91 0.02 1.80 0.05 0

Mean of selected variablesc

Consumption C 0.58 0.40% 0.04% 0.37% 0.39%
Labor L 1.01 0.08% 0.02% 0.07% 0.07%
Leverage ϕ 15.5 −0.82% 0.09% −0.99% −3.99%
Assets S 8.48 1.63% 0.20% 1.48% 1.51%
Share Financial SB/S 0.35 4.57% 0.37% 4.28% 4.37%

Standard deviation of selected variablesd

Consumption C 0.01 0.22% −1.36% 1.58% −3.19%
Labor L 0.006 −46.4% −5.05% −33.0% −48.3%
Leverage ϕ 2.92 −9.86% 0.04% −11.3% −48.6%
Assets S 0.14 32.9% −0.11% 35.3% 8.70%
Share Financial SB/S 0.10 −24.8% −1.67% −22.4% −53.6%

a Welfare gain/loss expressed as consumption equivalent relative to baseline rule in %.
b Annual run probability in %.
c The level is shown for the baseline economy. The other scenarios display the mean as
percentage deviations relative to the baseline economy.

d The level is shown for the baseline economy. The other scenarios display the standard
deviation as percentage deviations relative to the baseline economy.

5.2 Macroprudential Policy and Financial Stability

To put the gains of monetary policy in context, I analyze the stability and welfare implications

of a corresponding macroprudential policy. The focus is on a state-dependent leverage tax,

which taxes or subsidizes the intermediaries’ deposit holdings. Even though regulating the

unregulated part of the financial sector is in practice potentially extremely difficult, the tax

outlines the gains of macroprudential policy targeted at shadow banks. Furthermore, the

gains of the macroprudential instrument provide a benchmark for monetary policy.

The leverage tax τϕt requires the banker to pay a tax or receive a subsidy at the end of

the period for its borrowings from households: Nt = RKt Qt−1S
B
t−1−RDt−1Dt−1−τϕt Dt−1+τ

L
t .

The intermediaries receive a lump sum transfer τLt , which is chosen in a way that the leverage

tax is budget neutral for each intermediary. Even though the tax is budget neutral in the
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end, the leverage tax still alters the intermediaries’ problem and thus leverage decision.

The macroprudential authority responds to the security holdings of intermediaries similar

to monetary rule. If the securities are above a target value, the central bank raises the tax.

If the intermediaries hold only few securities, it increases the subsidy. The rule τϕt is:

τϕt =

(
SBt
SB

)τs
− 1, (25)

where τs is the response to deviations from the target value SB set by the macroprudential

authority. The target value SB is calibrated to the same value as in the monetary rule.

The last column of Table 2 shows the outcomes for the leverage tax. The parameter τs is

the lowest value that reduces the run frequency to zero. A forceful leverage tax can reduce

the run probability to exactly zero. Furthermore, the macroprudential policy has a superior

stabilization-welfare combination as the welfare gains are slightly larger. Nevertheless, mon-

etary policy can be a good substitute. This is especially important because the advantage of

monetary policy is that it gets in all of the cracks that macroprudential policy and supervision

fail to reach in reality.

However, there is an import caveat to this result. Ex-ante macroprudential policy in

isolation can be quite effective in increasing financial stability, which is discussed in Appendix

G.3 and aligns with Gertler et al. (2020a). This result contrasts with the findings for monetary

policy, where the ex-ante effects were considerably smaller. Thus, monetary policy can be a

good substitute for macroprudential policy only if the authorities can credibly commit to an

ex-post looser policy stance.

5.3 Counterfactual Policy Analysis and the Financial Crisis in 2008

The policies can now be used to conduct a counterfactual scenario based on the estimation. In

the previous section, the model is estimated under the assumption that monetary policy did

not respond to financial conditions before or after the Great Recession.22 Using the estimation

results, I can construct the counterfactual paths for economic activity and financial fragility

under alternative policies. This requires that the filtered shocks are fed into the model with

the different policy to calculate the counterfactual evolution of the economy. The outlined

strategy is general and can be used for a range of alternatives policies.

Specifically, I evaluate if the welfare-maximizing monetary rule that responds to financial

conditions (κopts ) would have mitigated the estimated run probability and prevented the run

in 2008. Figure 8 summarizes the counterfactual path. The build-up of financial fragility is

now almost completely contained as it stays basically at zero. Furthermore, the run does

not take place so that output decreases now only by 0.5% instead of 2.5% in 2008:Q4. Thus,

the counterfactual scenario underlines the large financial stability gains and suggests that

monetary policy could have helped to avoid the run. However, this result depends again on

the ex-post commitment. A scenario with only ex-ante leaning does not succeed in averting

22This means that the central bank follows a standard Taylor rule, which responds to output and inflation
deviations. Additionally, I assume the absence of macroprudential policy in the estimation.
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Figure 8: Counterfactual policy analysis of monetary policy with financial considerations.
The filtered median probability of a run in the next quarter and output growth
(solid blue) with its 68% confidence interval is shown for the baseline scenario.
Using the estimated shocks, the median for the counterfactual scenario of the mod-
ified monetary policy with monetary policy with financial considerations (dashed
green) and the scenario with only ex-ante leaning is shown (dash-dotted black).
The red line indicates the fourth quarter of 2008.

the financial crisis as the stabilization impact is insufficient. The run probability peaks at

a slightly lower level, but output still declines by around 2.5% due to the occurrence of the

run. Thus, an ex-ante leaning policy alone would likely have had only a limited impact.

6 Conclusion

I investigate the endogenous build-up of financial fragility with a new nonlinear macroeco-

nomic model. The combination of volatility shocks and risk-shifting incentives accounts for

key macroeconomic and financial features. I then take the model to data to obtain a novel

structural estimate of financial fragility. The estimation suggests a considerable increase in

financial fragility from 2005 onwards that ends up in a run in 2008. Finally, I show that

the zero lower bound entails substantial welfare costs and use counterfactual simulations to

assess whether monetary policy could have averted the run in 2008.
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Gust, C., Herbst, E., López-Salido, D., Smith, M.E., 2017. The empirical implications of the
interest-rate lower bound. American Economic Review 107, 1971–2006.

Hakamada, M., 2021. Risk Taking, Banking Crises, and Macroprudential Monetary Policy.
Technical Report. Mimeo.

He, Z., Kelly, B., Manela, A., 2017. Intermediary asset pricing: New evidence from many
asset classes. Journal of Financial Economics 126, 1–35.

He, Z., Khang, I.G., Krishnamurthy, A., 2010. Balance sheet adjustments during the 2008
crisis. IMF Economic Review 58, 118–156.

Herbst, E.P., Schorfheide, F., 2015. Bayesian estimation of DSGE models. Princeton Uni-
versity Press.

Ikeda, D., Matsumoto, H., 2021. Procyclical Leverage and Crisis Probability in a Macroeco-
nomic Model of Bank Runs. Discussion Paper Series 21-E-01. Institute for Monetary and
Economic Studies, Bank of Japan.

Jermann, U., Quadrini, V., 2012. Macroeconomic effects of financial shocks. American
Economic Review 102, 238–71.
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A Data: Shadow Bank Leverage

The leverage series in this paper uses book equity, which is the difference between the value

of the portfolio and liabilities of financial intermediaries. An alternative measure is the finan-

cial intermediaries’ market capitalization (e.g. market valuation of financial intermediaries).

Book equity is the appropriate concept in this context because the interest lies with credit

supply and financial intermediaries’ lending decisions, as stressed for instance in Adrian and

Shin (2014).23 In contrast to this, market capitalization is the appropriate measure when

considering the issuance of new shares or acquisition decisions (Adrian et al., 2013). In the

context of the model, the occurrence of a run also depends on book equity, which rational-

izes this choice. With that in mind, book leverage based on book equity is the appropriate

concept for my purposes.

A related issue is that marked-to-market value of book equity, which is the difference

between the market value of portfolio claims and liabilities of financial intermediaries, is con-

ceptually very different from market capitalization. As argued in Adrian and Shin (2014), the

book value of equity should be measured as marked-to-market. In such a case, the valuation

of the assets is based on market values. Importantly, the valuation of assets is marked-to-

market in the balance sheet of financial intermediaries that hold primarily securities (Adrian

and Shin, 2014). Crucially, the concept of marked-to-market value of book equity corresponds

to the approach to leverage adopted in the model as the value of the securities depends on

their market price. Therefore, I am interested in marked-to-market book leverage.

U.S. Flow of Funds The leverage measure for shadow banks uses U.S. Flow of Funds

balance sheet data for security brokers and dealers and finance companies similar to Nuño

and Thomas (2017).24

Equity is computed as the difference between book assets and book liabilities for both

types of financial intermediaries:

Equity Brokers & Dealerst = Assets Brokers & Dealerst − Liabilities Brokers & Dealerst(26)

Equity Finance Companiest = Assets Finance Companiest − Liabilities Finance Companiest(27)

The aggregate leverage measure is then defined as:

Leveraget =
Assets Finance Companiest +Assets Brokers & Dealerst

Equity Finance Companiest + Equity Security Brokers & Dealerst
. (28)

Compustat An alternative measure of book leverage of the shadow banking sector can be

constructed with individual balance sheet data from Compustat. I include financial firms that

are classified with SIC codes between 6141 - 6172 and 6199 - 6221. This set contains credit

institutions, business credit institutions, finance lessors, finance services, mortgage bankers

23He et al. (2010) and He et al. (2017) provide an opposing view with an emphasis on market leverage.
24The time series are adjusted for discontinuities and breaks in the data.
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and brokers, security brokers, dealers and flotation companies, and commodity contracts

brokers and dealers.25

Equity is computed as the difference between book assets and book liabilities for each

firm:

Equityi,t = Book Assetsi,t − Book Liabilitiesi,t. (29)

The leverage of the shadow banking sector is then defined as

Leveraget =

∑
i Book Assetsi,t∑
i Book Equityi,t

, (30)

where I sum up equity and assets over the different entities.

25Finance lessors and finance services with the SIC codes 6172 and 6199 are not official SIC codes, but are
used by the U.S. Securities and Exchange Commission.
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B Model: Equations, Derivations and Equilibrium

This section contains a description of all equilibrium equations and the equilibrium defini-

tion, a graphical characterization of the risk-shifting incentives, the formal derivation of the

financial intermediary’s problem including some simulations and a graphical characterization

of the endogenous run problem.

B.1 Equations and Equilibrium

The system of equations that characterizes the economy is described below.

Households

Ct =WtLt +Dt−1Rt −Dt + Ξt +QtS
H
t + (Zt + (1− δ)Qt)S

H
t−1, (31)

ϱt = (Ct)
−σ, (32)

ϱtWt = χLφt , (33)

1 = βEtΛt,t+1Rt+1, (34)

1 = βEtΛt,t+1
Zt+1+(1−δ)Qt+1

Qt+Θ(SHt /St−γF )/ϱt
, (35)

βEtΛt,t+1 = βEtϱt+1/ϱt. (36)

Financial Intermediaries

QtS
B
t = ϕtNt, (37)

ωt =
ϕt−1−1

RKt ϕt−1
, (38)

(1− pt)E
N
t [βΛt,t+1R̄tDt] + ptE

R
t [βΛt,t+1R

K
t+1QtS

B
t ] = Dt, (39)

(1− pt)E
N
t [Λt,t+1R

K
t+1(θλt+1 + (1− θ))[1− e

−ψ
2 − π̃t+1]] = ptE

R
t [Λt,t+1R

K
t+1(e

−ψ
2 − ωt+1 + π̃t+1)],(40)

λt =
(1−pt)ENt Λt,t+1RKt+1[θλt+1+(1−θ)](1−ωt+1)

1−(1−pt)ENt [Λt,t+1RKt+1ωt+1]−ptERt [Λt,t+1RKt+1]
, (41)

κt =
β(1−pt)ENt Λt,t+1[λt−(θλt+1+1−θ)]

(1−pt)ENt Λt,t+1[(θλt+1+1−θ)F̃t+1(ωt+1)]+ptERt Λt,t+1[(θλt+1+1−θ)(1−F̃t+1(ωt+1))]
, (42)

Et[π̃t+1] = Et

[
ωt+1Φ

(
log(ωt+1)+

1
2
(ψ+σ2

t+1)

σt+1

)
− e−ψ/2Φ

(
log(ωt+1)+

1
2
(ψ−σ2

t+1)

σt+1

)]
, (43)

Nt = θNS,t +NN,t, (44)

NN,t = (1− θ)ζSt−1, (45)

NS,t =

RKt Qt−1S
B
t−1 −Rt−1Dt−1 if x⋆t ≥= 1 ∨ ιt = 0 (no run)

0 if x⋆t < 1 ∧ ιt = 1 (run occurs)
, (46)

Rt =

R̄t−1 if x⋆t ≥= 1 ∨ ιt = 0 (no run)

x⋆t R̄t−1 if x⋆t < 1 ∧ ιt = 1 (run occurs)
. (47)
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Non-Financial Firms

Yt = At(Kt−1)
α(Lt)

1−α, (48)

Kt = St, (49)

φmct (1− α) YtLt =Wt, (50)

RKt = Zt+Qt(1−δ)
Qt−1

, (51)

Zt = φmct α Yt
Kt−1

, (52)(
Πt
Π − 1

)
Πt
Π = ϵ

ρr

(
φmct − ϵ−1

ϵ

)
+ Λt,t+1,

(
Πt+1

Π − 1
)

Πt+1

Π
Yt+1

Yt
, (53)

Γ
(
It
Kt

)
= a1

(
It
Kt

)(1−η)
+ a2, (54)

Qt =
[
Γ′
(

It
St−1

)]−1
, (55)

St = (1− δ)St−1 + Γ
(

It
St−1

)
St−1. (56)

Monetary Policy and Market Clearing

RIt = max
[
1, RI

(
Πt
Π

)κΠ (φmct
φmc

)κy]
, (57)

βEtΛt,t+1
RIt

Πt+1
= 1, (58)

Yt = Ct + It +G+ ρr

2

(
Πt
Π − 1

)2
Yt, (59)

St = SHt + SBt . (60)

Shocks

σt = (1− ρσ)σ + ρσσt−1 + σσϵσt , (61)

At = (1− ρA)A+ ρAAt−1 + σAϵAt , (62)

ιt =

1 with probability Υ

0 with probability 1−Υ
. (63)

Definition

The recursive competitive equilibrium is a price system, policy functions for the households,

the financial intermediaries, the final goods producers, intermediate goods producers and

capital goods producers, law of motion of the aggregate state and perceived law of motion of

the aggregate state, such that the policy functions solve the agents’ respective maximization

problem, the price system clears the markets and the perceived law of motion coincides with

the law of motion. The aggregate state of the economy is described by the vector of state

variables St = (Nt, S
B
t−1, At, σt, ιt), where ιt is a sunspot shock.
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B.2 Graphical Characterization of the Risk-Shifting Incentives

Figure 9 shows an example for the distributions of the good and substandard security. The

figure highlights the difference in mean, variance and upside risk.
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Figure 9: Trade-off between mean return, upside risk and limited liability. The blue line de-
picts the PDF of the substandard security (log normal distribution) and its mean
(blue dashed dotted). The red dashed line is the (mean) return of the good secu-
rity (dirac delta distribution). The green dash-dotted line is the default threshold
value ω̄. The blue and green shaded areas indicate the area associated with the
upside risk and protection from downside risk via limited liability, respectively.
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B.3 Derivation of Financial Intermediary’s Problem

In the following, I derive the financial intermediary’s problem. For simplicity, I first derive

the solution in the absence of runs. I then extend then the problem to account for runs.

Finally, I show some numerical results regarding the incentive and participation constraint.

B.3.1 Absence of runs

The financial intermediary maximizes the value of its franchise Vt subject to a participation

and incentive constraint, which reads as follows:26

V j
t (N

j
t ) = max

SBjt ,D̄t
βEtΛt,t+1

[
θV j

t+1(N
j
t+1) + (1− θ)(RKt+1QtS

Bj
t − D̄j

t )

]
, (64)

subject to βEt[Λt,t+1R̄
D
t D

j
t ] ≥ Dj

t , (65)

βEtΛt,t+1

{
θV j

t+1(S
Bj
t , D

j
t ) + (1− θ)[RKt+1QtS

Bj
t −D

j
t ]
}
≥ (66)

βEtΛt,t+1

∫∞
ωjt+1

{
θVt+1(ω, S

Bj
t , D

j
t ) + (1− θ)[RKt+1QtS

Bj
t ωjt+1 −D

j
t ]
}
dF̃t+1(ω),

where D̄j
t = R̄tD

j
t .

The financial intermediary’s problem can be written as the following Bellman equation:

Vt(N
j
t ) = max{SBjt ,b

j
t}
βEtΛt,t+1

[
θVt+1

((
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

]
+λjt

[
βEtΛt,t+1QtS

Bj
t b

j
t − (QtS

Bj
t −N j

t )

]
+κjtβEtΛt,t+1

{[
θVt+1

((
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

]
−
∫∞

b
j
t

RKt+1

[
θVt+1

((
ω − b

j
t

RKt+1

)
RKt+1QtS

Bj
t

)
+ (1− θ)

(
ω − b

j
t

RKt+1

)
RKt+1QtS

Bj
t

]
dF̃t+1(ω)

}

where I defined b
j
t =

(
RtD

j
t

)
/
(
QtS

B
t

)
and used that

N j
t =


(
1− b

j
t−1

RKt

)
RKt Qt−1S

Bj
t−1 if standard security(

ω − b
j
t−1

RKt

)
RKt Qt−1S

Bj
t−1 if substandard security

(67)

λjt and κjt are the Lagrange multipliers of the participation and incentive constraint. The

first order conditions are

0 = βEtΛt,t+1R
K
t+1[θV

′,j
t+1 + (1− θ)](1− ωjt+1) + λjtEt[βΛt,t+1R

K
t+1ω

j
t+1 − 1]

+κjtβEtΛt,t+1R
K
t+1

{
[θV ′,j

t+1 + (1− θ)](1− ωjt+1)−
∫∞
ωjt+1

[
[θV ′,j

t+1 + (1− θ)](ω − ωjt+1)

]
dF̃t+1(ω)

}
26The derivation is based on Nuño and Thomas (2017).
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and

0 = −βEtΛt,t+1[θV
′j
t+1 + (1− θ)] + λjtβEtΛt,t+1

−κjtβEtΛt,t+1

{
[θV ′j

t+1 + (1− θ)]−
∫∞
ωjt+1

[
θV ′j

t+1 + (1− θ)

]
dF̃t+1(ω)− θ Vt+1(0)

RKt+1QtS
Bj
t

f̃t(ω
j
t+1)

}
where I used ωjt+1 = b

j
t/R

K
t+1. The envelope condition is given as:

V ′j
t = λjt (68)

The first order conditions can be written as:

0 = βEtΛt,t+1R
K
t+1[θλ

j
t+1 + (1− θ)](1− ωjt+1) + λjtEt[Λt,t+1R

K
t+1ω

j
t+1 − 1]

+κjtEtR
K
t+1[θλ

j
t+1 + (1− θ)]

{
(1− ωjt+1)−

∫∞
ωjt+1

[
(ω − ωjt+1)

]
dF̃t+1(ω)

}
0 = −βEtΛt,t+1[θλ

j
t+1 + (1− θ)] + λjtβEtΛt,t+1

−κjtβEtΛt,t+1

{
[θλjt+1 + (1− θ)]−

∫∞
ωjt+1

[
θλjt+1 + (1− θ)

]
dF̃t+1(ω)− θ Vt+1(0)

R
t+1KQtS

Bj
t

f̃t(ω
j
t+1)

}
To continue solving the problem, I use a guess and verify approach. I guess that the value

function is linear in net worth, so that the value function reads as follows:

Vt = λjtN
j
t (69)

Furthermore, I guess the multipliers are equal across intermediaries, that is λjt = λt and κ
j
t =

κt ∀j. Using the guess, the incentive constraint can be written as:

βEtΛt,t+1


[
θλt+1(1− ωjt+1)R

K
t+1QtS

B
t + (1− θ)(1− ωjt+1)R

K
t+1QtS

B
t

]
−∫∞

ωjt+1

[
θλt+1(ωt − ωjt+1)R

K
t+1QtS

B
t + (1− θ)(ωt − ωjt+1)R

K
t+1QtS

B
t

]
dF̃t+1(ω)

 ≥ 0

and reformulated to:

βEtΛt,t+1(θλt+1 + (1− θ))
{
(1− ωjt+1)−

∫∞
ωjt+1

(ωt − ωjt+1)dF̃t+1(ω)
}
≥ 0 (70)

The next step is to simplify the first order conditions. I use that if either the incentive

constraint binds or if not then λt = 0 (Kuhn Tucker conditions) to simplify the participation

constraint and use that the guess for the value function evaluated at 0 so that the first order

conditions are given as:

0 = EtΛt,t+1R
K
t+1[θλt+1 + (1− θ)](1− ωt+1) + λtEt[Λt,t+1R

K
t+1ω

j
t+1 − 1] (71)

0 = −βEtΛt,t+1[θλt+1 + (1− θ)] + λtβEtΛt,t+1 − κtβEtΛt,t+1(θλt+1 + (1− θ))F̃t+1(ω
j
t+1)(72)

I can now get the following expression for the multipliers:

λt =
βEtΛt,t+1RKt+1[θλt+1+(1−θ)](1−ωjt+1)

1−βEtΛt,t+1RKt+1ω
j
t+1

(73)
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κt =
βEtΛt,t+1(λt−[θλt+1+(1−θ)])

βEtΛt,t+1(θλt+1+(1−θ))F̃t+1(ω
j
t+1)

(74)

I now want to show that the multipliers are symmetric across intermediaries. Assuming

that equation (70), which is the incentive constraint, is binding, I can get ωjt = ωt. Due to

bjt = ωjt+1R
K
t , bjt = bt can be obtained. At the same time, I have ωjt+1 = ωt+1 and b

j
t = bt.

Then, equation (73) implies that λjt = λt and equation (74) shows κjt = κt. This verifies

my guess that the multipliers are equalized. Note that λt > 1 implies that the financial

intermediaries do not want to return their net worth as then Vt > 1. I then check numerically

that the participation and incentive constraint are binding. Taken together, this implies

λt > 1 and κt > 0 as conditions.

To show that the leverage ratio is symmetric, I use the participation constraint and assume

that it is binding:

EtΛt,t+1QtS
Bj
t b

j
t − (QtS

Bj
t −N j

t ) = 0. (75)

The leverage ratio is then given as:

ϕjt =
1

1− EtΛt,t+1RKt+1ωt+1
. (76)

As the leverage ratio does not depend on j, this implies that ϕt = ϕjt .

The final step is to show that my guess Vt = λtN
j
t is correct. The starting point is again

the value function:

Vt(N
j
t ) = βEt

[
(θλt+1Nt+1 + (1− θ)

(
1− ωt+1

)
RKt+1QtS

Bj
t )
]
,

where I used N j
t+1 = (1− ωt+1)R

K
t+1QtS

Bj
t . I insert the guess to obtain:

λtN
j
t = ϕtN

j
t βEtΛt,t+1

[
θλt+1 + (1− θ)

](
1− ωt+1

)
RKt+1. (77)

and reformulate it to

λt = ϕtEtΛt,t+1

[
θλt+1 + (1− θ)

](
1− ωt+1

)
RKt+1 (78)

This gives us again a condition for λt:

λt = Et
[
(θλt+1Nt+1 + (1− θ)

(
1− ωt+1

)
RKt+1QtS

Bj
t )
]

(79)

= ϕtβEtΛt,t+1

[
θλt+1 + (1− θ)

](
1− ωt+1

)
RKt+1. (80)

Inserting (76), the condition for λt becomes:

λt =
βEtΛt,t+1

[
θλt+1 + (1− θ)

](
1− ωt+1

)
RKt+1

1− βEtΛt,t+1RKt+1ωt+1
. (81)

This coincides with the equation (73). This verifies the guess.
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B.3.2 With Runs on the Financial Sector

In this section, the possibility of runs is included. The financial intermediary maximizes Vt

subject to a participation and incentive constraint, which reads as follows:

V j
t (N

j
t ) = max

SBjt ,D̄t
(1− pjt )βE

N
t Λt,t+1

[
θV j

t+1

(
N j
t+1

)
+ (1− θ)(RKt+1QtS

Bj
t − D̄j

t )

]
(82)

s.t. (1− pjt )βE
N
t [Λt,t+1QtS

Bj
t b

j
t ] + pjtβE

R
t [R

K
t+1QtS

Bj
t ] ≥ (QtS

Bj
t −N j

t ) (83)

(1− pjt )E
N
t

[
Λt,t+1θVt+1

(
N j
t+1

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

]
≥ (84)

βΛt,t+1Et

Λt,t+1

∫∞
b
j
t

RKt+1

θVt+1

(
N j
t+1

)
+ (1− θ)

(
ω − b

j
t

RKt+1

)
RKt+1QtS

Bj
t dF̃t+1(ω)


The financial intermediary’s specific can be written as Bellman equation:

Vt(N
j
t ) = max{ϕjt ,b

j
t}
(1− pjt )βE

N
t Λt,t+1

[
θVt+1

((
1− b

j
t

RKt+1

)
RKt+1ϕ

j
tN

j
t

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1ϕ

j
tN

j
t

]
+λjt

[
(1− pjt )βE

N
t [Λt,t+1ϕ

j
tN

j
t b
j
t ] + pjtβE

R
t [R

K
t+1ϕ

j
tN

j
t ]− (ϕjtN

j
t −N j

t )
]

+κjtβ

{[
(1− pjt )E

N
t Λt,t+1

[
Λt,t+1θVt+1

((
1− b

j
t

RKt+1

)
RKt+1ϕ

j
tN

j
t

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1ϕ

j
tN

j
t

] ]
−βEt

[
Λt,t+1

∫∞
b
j
t

RKt+1

θVt+1

((
1− b

j
t

RKt+1

)
RKt+1ϕ

j
tN

j
t

)
+ (1− θ)

(
ω − b

j
t

RKt+1

)
RKt+1ϕ

j
tN

j
t dF̃t+1(ω)

]}

The first order conditions with respect to ϕjt can be written as

0 = (1− pjt )E
N
t Λt,t+1R

K
t+1[θV

′j
t+1 + (1− θ)](1− ωjt+1)

+λjt ((1− pjt )E
N
t [Λt,t+1R

K
t+1ω

j
t+1] + ptE

R
t [Λt,t+1R

K
t+1]− 1)

+κjt ((1− pjt )βE
N
t Λt,t+1R

K
t+1[θV

′j
t+1 + (1− θ)](1− ωjt+1)

−κjtβEtΛt,t+1

∫∞
ωjt+1

[
RKt+1[θV

′j
t+1 + (1− θ)](ω − ωjt+1)

]
dF̃t+1(ω)

−∂pjt
ϕjt
ENt Λt,t+1R

K
t+1[θV

′j
t+1 + (1− θ)](1− ωjt+1)

(
1 + κjt

)
(85)

−∂pjt
ϕjt
ENt

(
RKt+1ω

j
t+1 −RKt+1

)
(86)

where I applied ωjt+1 = b
j
t/R

K
t+1. Gertler et al. (2020b) show that the even though the

optimization of leverage ϕj affect the default probability pt, this indirect effect on on the firm

value Vt and the promised return RDt is zero. The reason is that at the cutoff value of default,

net worth is zero, which implies Vt+1 = 0. Similarly, the promised return is unchanged. The

cutoff values of default is defined as:

ξDt+1(ϕ
j
t ) =

{
(σt+1, At+1, ιt+1) : R

K
t+1

ϕjt − 1

ϕjt
R
D
t

}
. (87)
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At the cutoff points, the intermediary can exactly cover the face value of the deposits, which

implies

ωjt = 1. (88)

Based on the derivation in Gertler et al. (2020b), the property ωjt = 1 implies that

− ∂pt
SBjt

ENt Λt,t+1R
K
t+1[θV

′j
t+1 + (1− θ)](1− ωjt+1)

(
1 + κjt

)
= 0, (89)

− ∂pt
SBjt

ENt

(
RKt+1ω

j
t+1 −RKt+1

)
= 0, (90)

The first order condition with respect to ϕBt becomes then

0 = (1− pjt )E
N
t Λt,t+1R

K
t+1[θV

′j
t+1 + (1− θ)](1− ωjt+1)

+λjt ((1− pjt )E
N
t [Λt,t+1R

K
t+1ω

j
t+1] + ptE

R
t [Λt,t+1R

K
t+1]− 1)

+κjt ((1− pjt )βE
N
t Λt,t+1R

K
t+1[θV

′j
t+1 + (1− θ)](1− ωjt+1)

−κjtβEtΛt,t+1

∫∞
ωjt+1

[
RKt+1[θV

′j
t+1 + (1− θ)](ω − ωjt+1)

]
dF̃t+1(ω)

The first order condition with respect to b
j
t is given as

0 = −β(1− pjt )E
N
t Λt,t+1[θV

′j
t+1 + (1− θ)]

+λjtβ(1− pjt )E
N
t Λt,t+1 (91)

−κjtβ(1− pjt )E
N
t Λt,t+1

{
[θV ′j

t+1 + (1− θ)]

}
+κjtβ(1− pjt )EtΛt,t+1

∫∞
ωjt+1

[
θV ′j

t+1 + (1− θ)

]
dF̃t+1(ω)− θ Vt+1(0)

RKt+1QtS
Bj
t

f̃t(ω
j
t+1)

where I applied ωjt+1 = b
j
t/R

K
t+1

Similar to before, I use the following guess for the value function

Vt = λjtN
j
t (92)

and also the fact that the multipliers are equal across intermediaries, that is λjt = λt and

κjt = κt∀j. In addition, I also guess now that the probability of a run does not depend on

individual characteristics, that is pjt = pt.

The incentive constraint can then then be written as

β(1− pjt )E
N
t

[
Λt,t+1(θλt+1 + (1− θ))(1− ωjt+1)R

K
t+1

]
≥ (93)

βEt

Λt,t+1

∫∞
b
j
t

RKt+1

(θλt+1 + (1− θ))
(
ω − ωjt+1

)
RKt+1dF̃t+1(ω)


The two first order conditions can then be adjusted similar to section B.3.1 and be written
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as

0 = (1− pt)E
N
t Λt,t+1R

K
t+1[θλt+1 + (1− θ)](1− ωjt+1) +

λt((1− pt)E
N
t [Λt,t+1R

K
t+1ωt+1] + ptE

R
t [Λt,t+1R

K
t+1]− 1) (94)

0 = −β(1− pt)E
N
t Λt,t+1[θλt+1 + (1− θ)] + λtβ(1− pt)E

N
t Λt,t+1

−κtβ
{
(1− pt)E

N
t Λt,t+1

[
(θλt+1 + 1− θ) F̃t+1(ω

j
t+1)

]
+ ptE

R
t Λt,t+1

[
(θλt+1 + 1− θ)

(
1− F̃t+1(ω

j
t+1)

)]}
(95)

Using the same strategy as in B.3.1, the guess about the equalized multipliers can be

verified. Similarly, it can be shown that leverage is the same across intermediaries. This then

verifies that the guess of the run probability pjt = pt is verified as the cutoff value is the same

across intermediaries as shown in equation (87). I additionally assume that in case of a run

on the entire financial sector, a intermediary that survives shuts down and returns their net

worth. This implies that ERt λt+1 = 1. The participation constraint is given as:

(1− pt)E
N
t [βΛt,t+1R̄tDt] + ptE

R
t [βΛt,t+1R

K
t+1QtS

B
t ] = Dt. (96)

The incentive constraint is given as:

(1− pt)E
N
t [Λt,t+1R

K
t+1(θλt+1 + (1− θ))[1− e

−ψ
2 − π̃t+1]] = (97)

ptE
R
t [Λt,t+1R

K
t+1(e

−ψ
2 − ωt+1 + π̃t+1)],

λt and κt are derived from the first order conditions in equations (94) and (95) are given as:

λt =
(1−pt)ENt Λt,t+1RKt+1[θλt+1+(1−θ)](1−ωt+1)

1−(1−pt)ENt [Λt,t+1RKt+1ωt+1]−ptERt [Λt,t+1RKt+1]
(98)

κt =
β(1−pt)ENt Λt,t+1[λt−(θλt+1+1−θ)]

(1−pt)ENt Λt,t+1[(θλt+1+1−θ)F̃t+1(ωt+1)]+ptERt Λt,t+1[(θλt+1+1−θ)(1−F̃t+1(ωt+1))]
(99)

If λt > 1 and κt > 0, the participation and incentive constraint are binding.27

B.3.3 Binding of the Participation and Incentive Constraint: Numerical Check

When deriving the intermediaries problem and solving the model with the global solution

method, I assume that the incentive constraint and participation constraint are always bind-

ing. This implies κt > 0 and λt > 1 in all periods. I verify these assumptions afterwards nu-

merically using a simulation of 500000 periods and show that these assumptions hold in almost

all periods (more than 99.5% of periods). As an example of the dynamics, Figure 10 shows the

path of κ and λ based on the simulation of the boom-bust dynamics with the volatility shock

in Section 3.2 (Figure 2), which is as follows: The economy is initially at its stochastic steady

state (SS). From period 1 until period 8, the economy is hit by a one-standard-deviation neg-

ative volatility shock in every period. In period 9, a two-standard-deviation positive volatility

shock materializes. Afterwards, no more shocks occur. No sunspot shock occurs in period 9,

27λt > 1 ensures that the intermediaries do not want to return their net worth to the households.
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Figure 10: The dynamics of the participation constraint (λt) and incentive constraint (κt)
multiplier during a credit boom. The simulation shows the impulse responses
for a sequence of volatility shocks. The sequence is the same as in Figure 1. The
economy is initially at its stochastic steady state (SS). From period 1 until period
8, the economy is hit by a one-standard-deviation negative volatility shock in
every period. In period 9, a two-standard-deviation positive volatility shock
materializes. Afterwards, no more shocks occur. No sunspot shock occurs in
period 9, which implies no run.

which implies no run. The figure shows that the conditions are satisfied in this experiment.

The constraints also hold in the other main experiments (the typical financial crisis (Figure

3) and the median path in the estimation (Section 4)).

The reason for these rare violations is that the intermediaries accumulate too much net

worth. This could be addressed, for instance, by allowing for state-dependent dividend pay-

ments from the intermediaries to the households. The payments could be modeled as an

occasionally binding constraint similar to the idea of equity injections as in Gertler et al.

(2020a).
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B.4 Endogenous Runs and Multiple Equilibria: Graphical Characteriza-

tion

The importance of leverage can be shown by rewriting the recovery ratio x⋆t :

x⋆t =
ϕt−1

ϕt−1 − 1

[(1− δ)Q⋆t + Z⋆t ]

Qt−1R̄t−1
. (100)

Elevated leverage levels make it more likely that the run equilibrium will occur. Furthermore,

a contractionary shock, such as an increase in volatility or a negative TFP shock, reduces the

return and can thus enable a run if the leverage of the financial sector is elevated.

Figure 11 illustrates how the combination of the volatility shock and leverage determine

which region an economy falls into. The x⋆t = 1 line is downward sloping and divides the two

regions. First, it can be seen that a high level of previous period leverage and an increase in

volatility push the economy into the fragile region, as discussed above. Second, low leverage

is associated with the safe region. This highlights that the pre-crisis period is critical for the

build-up of financial fragility. A period of low volatility reduces the risk-shifting incentives.

The financial intermediaries increase their leverage and extend their credit supply. This credit

boom brings with it financial fragility due to low loss absorbing capacities. In such a scenario

with high leverage, a contraction shock can then cause a roll-over crisis. To put it another

way, tranquil periods sow the seed of a crisis.
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Figure 11: Illustration showing how the safe and fragile regions are dependent on leverage
ϕt−1 and the volatility shock ϵσt .
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C Global Solution Method

The model is solved with global methods that can account for the multiplicity of equilibria

and occasionally binding constraints. The state variables are Xt = {St−1, Nt, σt, At, ιt},
where I used Nt as state variable instead of Dt−1 for computational reasons. The pa-

rameters of the model are summarized as ΘP . I solve for the following policy func-

tions Q(Xt; Θ
P ), C(Xt; Θ

P ), b(X),Π(Xt; Θ
P ), λ(Xt; Θ

P ), the law of motion of net worth

N ′(Xt, εt+1; Θ
P ) and the probability of a run next period P (Xt; Θ

P ). These objects can

be used to solve all remaining variables.

The algorithm to find the described policy functions uses time iteration with linear in-

terpolation based on Richter et al. (2014). In other words, the functional space for the

policy function approximation is piecewise linear.28 The expectations are evaluated using

Gauss-Hermite quadrature, where the matrix of nodes is denoted as ε.

In addition to this, the solution method features a non-standard aspect. To account

for the multiplicity of equilibria due to possibility of a run, I use an additional piecewise

approximation of the policy functions similar to Aruoba et al. (2018) and Aruoba et al.

(2021).29 In particular, I derive separate policy functions to approximate the run and normal

equilibrium. Thus, the piecewise approximation of the policy functionsQt(X; Θ) is postulated

as

Q(Xt; Θ) =

f1Q(Xt; Θ
P ) if no run takes place in period t

f2Q(X̃t; Θ
P ) if a run takes place in period t

(101)

and similar for the remaining policy functions (C(Xt; Θ
P ), b(X),Π(Xt; Θ

P ), λ(Xt; Θ
P ),

P (Xt; Θ
P ), N ′(Xt, εt+1; Θ

P )). The distinct functional space for the functions f1Q(Xt; Θ)

and f2Q(Xt; Θ) is piecewise linear. The state variables for the run equilibrium are X̃t =

{St−1, σt, At}.
Even though the used solution method can account for the nonlinear dynamics, using such

an “additional” piecewise element to distinct the equilibria related to the run can improve

the accuracy. The reason is that the net worth value during a run is given from the other

state variables so that I can reduce the state space from to three variables. Figure 12 shows

the policy function for the asset price Q(Xt; Θ
P ). The blue line describes f1Q(·) - the piece

related to the no-run equilibrium, while the red line displays f2Q(·) - the piece related to the

run equilibrium. Net worth Nt is varied on the left plot and volatility on the right plot, while

the other state variables are fixed. The grid points of the discretized state space are marked

as crosses and the policy functions are approximated using linear interpolation between the

grid points. The function f2Q(·) is described only with one point on the left plot. The reason

is that the net worth value during a run is given from the other state variables so that I

28An alternative to the piecewise linear functions could have been e.g. Chebyshev polynomials.
29The ZLB introduces additional multiple equilibria (see e.g. Benhabib et al. 2001 and Aruoba et al. 2018).

I focus only on one specific equilibrium, namely the targeted-inflation equilibrium, by choosing starting values
for the policy function iteration that are taken from the targeted-inflation equilibrium. Therefore, I abstract
from the multiplicity arising from the zero lower bound.
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can reduce the state space from four to three variables. Therefore, the policy function is

only solved at this point for the specific values of the remaining state variables. This is also

the reason why using such a piecewise linear approximation can improve the accuracy. The

reason is that the net worth value during a run is given from the other state variables so that

I can reduce the state space from four to three variables.

The gain in accuracy can be evaluated when inspecting the difference to the function

f1Q(·). This is the case because the function f1Q(·) can also cover the run equilibrium, namely

the level of net worth corresponds to the value during a run. This is possible because the

value of net worth depends only on the level of previous period securities. This shows that

the gains are rather small. The same finding is also for the right plot, where net worth is fixed

to the level that occurs during a run and the volatility shock takes place. Thus, a method

without piecewise approach could account very well for the nonlinear dynamics related to the

run. However, the piecewise approach increases the accuracy and provides security that the

run equilibrium is sufficiently accurate solved. Another advantage is that it can also capture

if the run and no run economy has a different structure. For instance, if the central bank

has a specific policy that it only implements after a run, it is strictly necessary to have the

piecewise approach.

While f1Q(Xt; Θ
P ) can represent the policy function over the entire considered level of net

worth, it would be less precise to describe a run. The reason is that during the run period, I

have pinned down the exact level of net worth, which is slightly positive as new banks enter

in this period. Thus, there would be a larger approximation error if I would not define a

second function for this run equilibrium.

The algorithm to find the policy functions is summarized below:

1. Define a state grid X ∈ [St−1, St−1]× [N t, N t]× [σt, σt]× [At, At] and integration nodes

ϵ ∈ [ϵσt+1, ϵ
σ
t+1] × [ϵAt+1, ϵ

A
t+1] to evaluate expectations based on Gauss-Hermite

quadrature

2. Guess the piecewise linear policy functions to initialize the algorithm, which includes a

separate guess for each of the pieces that are related to the equilibriau (e.g. f1Q(X̃t; Θ
P )

and f2Q(X̃t; Θ
P )).)30

(a) the ”classical” policy functionsQ(Xt; Θ
P ), C(Xt; Θ

P ), b(X),Π(Xt; Θ
P ), λ(Xt; Θ

P ),

(b) a function N ′(Xt, εt+1; Θ
P ) at each point from the nodes of next period shocks

based on Gauss-Hermite quadrature

(c) the probability P (Xt; Θ
P ) that a run occurs next period

3. Solve for all time t variables for a given state vector assuming that no run occur to

first solve for the functions related to no-run equilibrium (e.g. f1Q(Xt; Θ
P )). Take

from the previous iteration j the law of motion N ′(Xt, εt+1; Θ
P ) and the probability of

30In practice, it can be helpful to solve first for the economy with only one shock, for instance the volatility
shock, and solve this model in isolation. The resulting policy functions can then be used as starting point for
the full model with two shocks.
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Figure 12: The figure shows the piecewise approximation of the policy function for the
asset price Q(Xt; Θ

P ). The function f1Q(Xt; Θ) describes the approximation of
the policy function if no run occurs. The crosses are the grid points and the
lines show the linear interpolation between these points. The function f2Q(X̃t; Θ)
describes the policy function of a run takes place in this period. In the left graph,
the state variable net worth Nt is varied, while the remaining state variables are
fixed. The function f2Q(X̃t; Θ) displays only a single dot in the left graph because
the level of net worth is predefined during a run (conditional on fixing the other
state variables). In the right graph, the level of volatility is varied, while the
remaining state variables are fixed. Net worth in the no run case is fixed to the
level implied in the run case.

a run P (Xt; Θ
P ) as given and calculate time t + 1 variables using the guess j policy

functions with Xt+1 as state variables. The expectations are calculated using numerical

integration based on Gauss-Hermite quadrature. A numerical root finder with the time

t policy functions as input minimizes the error in the following five equations:

err1 = ( Πt
ΠSS

− 1) Πt
ΠSS

−
(
ϵ
ρr

(
φmct − ϵ−1

ϵ

)
+ Λt,t+1(

Πt+1

ΠSS
− 1)Πt+1

ΠSS

Yt+1

Yt

)
, (102)

err2 = 1− βΛt,t+1
it

Πt+1
1, (103)

err3 = (1− pt)E
N
t

[
βΛt,t+1R̄tDt

]
+ ptE

R
t

[
βΛt,t+1R

K
t+1QtS

B
t

]
−Dt, (104)

err4 = (1− pt)E
N
t

[
Λt,t+1R

K
t+1(θλt+1 + (1− θ))(1− e

−ψ
2 π̃t+1)

]
(105)

−ptERt
[
Λt,t+1R

K
t+1(e

−ψ
2 − ωt+1 + π̃t+1)

]
,

err5 = λt −
(1−pt)ENt Λt,t+1RKt+1[θλt+1+(1−θ)](1−ωt+1)

1−(1−pt)ENt [Λt,t+1RKt+1ωt+1]−ptERt [Λt,t+1RKt+1]
. (106)

4. Take the iteration j policy functions , N ′(Xt, εt+1; Θ
P ) and P (Xt; Θ

P ) as given and

solve the whole system of time t and (t + 1) variables. Calculate then Nt+1 using the
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”law of motion” for net worth

Nt+1 = max
[
RKt+1QtS

B
t −RtDt, 0

]
+ (1− θ)ζSt. (107)

A run occurs at a specific point if

RKt+1QtS
B
t −RtDt ≤ 0. (108)

In such a future state, the weight of a run is 1. In the other state, the weight of a run

0.31 This can be now used to evaluate the probability of a run next period based on

Gauss-Hermite quadrature so that I know pt.

5. Repeat steps 3 and 4 for the run equilibrium so that the piece of the policy functions

related to the run equilibrium is solved for (e.g. f2Q(Xt; Θ
P ))

6. Update the policy policy functions Q(Xt; Θ
P ), C(Xt; Θ

P ), b(X),Π(Xt; Θ
P ), λ(Xt; Θ

P )

slowly. For instance for consumption policy function, this could be written as:

Cj+1(Xt; Θ
P ) = αU1Cj(Xt; Θ

P ) + (1− αU1)Csol(Xt; Θ
P ), (109)

where the subscript sol denotes the solution for this iteration and αU1 determines the

weight of the previous iteration. Furthermore, N ′(Xt, εt+1; Θ
P ) and P (Xt; Θ

P ) are

updated using the results from step 4:

N ′
j+1(Xt, εt+1; Θ

P ) = αU2N ′
j(Xt, εt+1; Θ

P ) + (1− αU2)N ′
sol(Xt, εt+1; Θ

P ), (110)

Pj+1(Xt; Θ
P ) = αU3Pj(Xt; Θ

P ) + (1− αU3)Psol(Xt; Θ
P ). (111)

7. Repeat steps 3 - 6 until the errors of all functions, which are the classical policy functions

Q(Xt; Θ
P ), C(Xt; Θ

P ), b(X),Π(Xt; Θ
P ), λ(Xt; Θ

P ) together with the law of motion of

net worth N ′(Xt, εt+1; Θ
P ) and the probability of a run P (Xt; Θ

P ), at each point of

the discretized state are sufficiently small.

31This procedure would imply a zero and one indicator, which is very unsmooth. For this reason, I use the

following functional forms based on exponential function:
exp(ζ1(1−Dt+1))

1+exp(ζ1∗(1−Dt+1))
where Dt+1 =

Rk
t+1

RD
t

ϕ
ϕ−1

at each

calculated Nt+1. ζ1 is set to 2500. This large value of ζ ensures sufficient steepness so that the approximation
is close to an indicator function of 0 and 1.
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D Relationship between Leverage and Run Probability

The dynamics of leverage are very important and influence the run probability strongly.

In general, extensive leverage makes the shadow banking system runnable, thereby raising

the vulnerability of the economy to future financial crises. However, as it turns out, the

relationship is complex and highly nonlinear.

The relationship between leverage and the run probability is complex and highly nonlinear.

To show this result, the upper plot of Figure 13 shows a mapping between leverage and the

run probability. The mapping results from increasing the level of the state variable St−1

(securities) and calculating its impact on leverage and the run probability.32 For instance, if

previous period securities St−1 are at 8.1, then leverage is around 20.2 and the run probability

p is 0. Increasing St−1 to 9.0 (while keeping constant all other state variables), leverage

increases to around 20.9 and the run probability goes up to almost 5%. The graph confirms

the general dynamics: higher leverage is associated with a higher run probability. At the

same, the relationship is highly nonlinear. If leverage is below some varying threshold value,

e.g. 20.4 for the displayed scenario, the probability of a run stays is zero. Once leverage

increases above the threshold, then the probability of a run starts to increase. Importantly,

the increase in the run probability accelerates, as the curve becomes steeper. This shows that

the dynamics are nonlinear.

However, the mapping from leverage to the probability of a run is even more complicated

in some states of the world. For instance, if the financial sector is relatively small, that is the

share of its securities relative to total securities is low, then a high level of leverage is associated

with rather low systemic risk for the financial sector. In contrast to this, if leverage is high and

the share of intermediaries’ securities is large, then there is substantial financial vulnerability.

The lower plot of Figure 13 shows that such a relationship, in which the same leverage level

is associated with altering run probabilities, can occur. The figure shows the same mapping

between ϕ and p as the upper plot. However, the mapping is analyzed for different levels

of net worth. Each level of net worth is shown as a distinct line. For orientation, the blue

line corresponds to the scenario shown in the upper plot. Once net worth increases further

and thus the share of securities held by the financial intermediaries, the relationship between

leverage and the run probability can become backward bending. These backward bending

curves show that a higher level of securities initially increases leverage and the run probability

simultaneously. But the dynamics can change at one point. If the level of total securities

increases further, the probability of a run continues to increase. However, leverage then

starts to reverse and fall. The reason is that the run risk becomes too large, which forces

intermediaries to reduce their leverage.33 An important implication is that the same level

of leverage can have many outputs. To express this in more mathematical terms, the model

32The mapping between leverage ϕt and the run probability pt is shown for varying previous period total
securities St−1. Total securities St−1 are increased from 8.1 to 9.0, which then gives the changes in ϕt and pt.
To calculate the mapping, all other state variables (net worth, volatility and TFP) are fixed.

33The implication of this property is that the run probability is a tail risk in the model. Once it would
become too large, intermediaries are forced to reduce their leverage, which limits financial fragility. This also
implies that run probability also increases at a slower pace.
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Figure 13: Relationship between leverage ϕ and the probability of a run for the period ahead
p. The upper plot of Figure shows the mapping between leverage and the run
probability if the level of previous period total securities St−1 is varied. Total
securities St−1 are increased from 8.1 to 9.0. For instance, if previous period
securities St−1 are at 8.1, then leverage is around 20.2 and the run probability p
is 0. Increasing securities to 9.0 (while keeping constant all other state variables),
leverage increases to around 20.9 and the run probability goes up to almost 5%.
To calculate the mapping, all other state variables (net worth, volatility and
TFP) are fixed. The lower plot shows the same mapping for varying levels of
net worth.

does not have a function that assigns to each level of leverage a unique run probability.34

Another way of showing that same level of leverage can result in different run probabil-

ities depending on the economic circumstances is to use a scatter plot of leverage and run

probability, as shown in Figure 14. The plot is based on based on a simulation over 500,000

periods. The figure highlights that the same level of leverage can result in different run

probabilities in line with the statement. Nevertheless, a very important result is that higher

leverage in general is associated with an elevated run probability, which is also indicated by

the figure. Furthermore, the scatter plot also shows that there are some scenarios with very

high leverage and a run probability of basically zero. The reason behind these observation

34The different lines are also overlapping horizontally. This also permits to have a function that gives a
direct mapping from leverage to the run probability.
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Figure 14: The figure shows a scatter plot of leverage and the run probability based on a
simulation over 500,000 periods.

is that these data points are associated with periods, in which the financial sector had just

started to rebuild after a run. While leverage is very high in this period, the run probability

is basically zero as almost all securities are already hold by the households.

Thus, the relationship is not mechanic, and leverage alone is not a sufficient statistic to

get the mapping to the probability of a run. This underlines why it is important to use the

particle filter (instead of assuming a mechanic relationship) to extract the probability of a

run over time.
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E Particle Filter

I use a particle filter with sequential importance resampling based on Atkinson et al. (2020)

and Herbst and Schorfheide (2015). The algorithm is adapted to incorporate sunspot shocks

and endogenous equilibria similar to Aruoba et al. (2018), who have a model with sunspot

shocks that directly determine the equilibria. I extend this approach to include the circum-

stance that the probability of equilibria is endogenously time-varying. The total number of

particles M is set to 10000 as in Aruoba et al. (2018).

1. Initialization Use the risky steady state of the model as a starting point and draw

{vt,m}0t=−24 for all particles m ∈ {0, ...,M}. I set {ιt,m = 0}0t=−24, which excludes a run

in the initialization. The simulation of these shocks provides the start values for the

state variables X0,m.

2. Recursion Filter the nonlinear model for periods t = 1, ..., T

(a) Draw the sunspot shock ιt,m and the structural shocks vt,m for each particle

m = {1, ...,M}. The sunspot shock is drawn from a binomial distribution with

realizations 0, 1:

ιt,m ∼ B (1,Υ) , (112)

where 1 indicates the number of trails and Υ is the probability of ι = 1.35 The

structural shocks are drawn from a proposal distribution that distinguishes be-

tween the realizations of the sunspot shock :

vt,m ∼ N(vt
ι=0, I) if ιt,m = 0, (113)

vt,m ∼ N(vt
ι=1, I) if ιt,m = 1. (114)

As the regime selection is endogenous in the model, the proposal distribution can

be the same for the two realizations of the sunspot shock. This is the case if

the model does not suggest the realization of a run. The difference in using the

proposal distribution is that instead of drawing directly from a distribution, I draw

from an adapted distribution. I derive the proposal distribution by maximizing

the fit of the shock for the average state vector Xt−1 =
1
M

∑M
m=1Xt−1,m

i. Calculate a state vector Xt from Xt−1 and a guess of vt for the possible real-

izations of the sunspot shock:

Xι=0
t = f(Xt−1, v

ι=0
t , ιt = 0) (115)

Xι=1
t = f(Xt−1, v

ι=1
t , ιt = 1) (116)

ii. Calculate the measurement error from the observation equation for the two

35In practice, I draw from a uniform distribution bounded between 0 and 1 and categorize the sunspot
accordingly.
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cases

uι=0
t = Yt − g(Xι=0

t ), (117)

uι=0
t = Yt − g(Xι=1

t ). (118)

The measurement error follows a multivariate normal distribution, so that

the probabilities of observing the measurement error for the different sunspot

shocks are given by

p(uι=0
t |Xι=0

t ) = (2π)−n/2|Σu|−0.5 exp
(
−0.5(uι=0

t )′Σ−1
u (uι=0

t )
)
, (119)

p(uι=1
t |Xι=1

t ) = (2π)−n/2|Σu|−0.5 exp
(
−0.5(uι=1

t )′Σ−1
u (uι=1

t )
)
, (120)

where Σu is the variance of the measurement error and n is the number of

observables, which is 2 in this setup.

iii. Calculate the probability of observing Xι=0
t respectively Xι=1

t conditional on

the average state vector from the previous period

p(Xι=0
t |Xt−1) = (2π)−n/2 exp

(
−0.5(vt

ι=0)′(vt
ι=0)

)
, (121)

p(Xι=1
t |Xt−1) = (2π)−n/2 exp

(
−0.5(vt

ι=1)′(vt
ι=1)

)
. (122)

iv. To find the proposal distribution, maximize the following objects with respect

vt
ι=0 respectively vt

ι=1 :

p(Xι=0
t |Xt−1)p(u

ι=0
t |Xι=0

t ), (123)

p(Xι=1
t |Xt−1)p(u

ι=1
t |Xι=1

t ). (124)

This provides the proposal distributions N(vt
ι=0, I) and N(vt

ι=1, I).

(b) Propagate the state variables Xt,m by iterating the state-transition equation for-

ward given Xt−1,m, vt,m and ιt,m:

Xt,m = f(Xt−1,m, vt,m, ιt). (125)

(c) Calculate the measurement error

utm = Yt − g(Xt,m). (126)

The incremental weights of the particle m can be written as

wt,m =
p(ut,m|Xt,m)p(Xt,m|Xt−1,m)
f(Xt,m|Xt−1,m,Yt,ιt,m) (127)

=


(2π)−n/2|Σu|−0.5 exp(−0.5u′t,mΣ−1

u ut,m) exp(−0.5v′t,mvt,m)
exp(−0.5(vt,m−vι=0

t )′(vt,m−vι=0
t ))

if ιt,m = 0

(2π)−n/2|Σu|−0.5 exp(−0.5u′t,mΣ−1
u ut,m) exp(−0.5v′t,mvt,m)

exp(−0.5(vt,m−vι=1
t )′(vt,m−vι=1

t ))
if ιt,m = 1

(128)

where the density f(·) depends on the realization of the sunspot shock. The
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incremental weights determine the log-likelihood contribution in period t:

ln(lt) = ln

(
1

M

M∑
m=1

wt,m

)
. (129)

(d) Resample the particles based on the weights of the particles. First, the normalized

weights Wt,m are given by:

Wt,m =
wt,m∑M
m=1wt,m

. (130)

Second, the deterministic algorithm of Kitagawa (1996) resamples the particles by

drawing from the current set of particles adjusted for their relative weights. This

gives a resampled distribution of state variables Xt,m.

3. Likelihood Approximation Determine the approximated log-likelihood function of

the model as

ln(Lt) =
T∑
t=1

ln(lt). (131)
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F Estimation of Financial Fragility: Additional Results

This section contains additional results for the estimation of financial fragility with the par-

ticle filter in Section 4. First, the observables and filtered series are compared. Three ro-

bustness checks (additional observable, measurement error, shocks post 2009) are conducted.

Furthermore, the role of multimodality and tail risk is evaluated.

F.1 Comparison of Observables and Filtered Series

Figure 15 compares the estimated sequence for leverage and output against the data. The

model captures the fluctuations in the observables. In line with the data, leverage increases

substantially prior to the financial crisis. The peak comes in 2008:Q1, with leverage close to

24. The filtered path also takes account of the strong decrease in output and leverage in the

fourth quarter of 2008.

F.2 External Validation: Volatility Series

I compare the model-implied filtered volatility series with a data proxy. Specifically, I use

the volatility measure of Nuño and Thomas (2017), which is the cross-sectional variance of

industry level TFP based on data from the National Bureau of Economic Research and the

US Census Bureau’s Center for Economic Studies.36 The filtered structural volatility series

and the data proxy are shown in the lower plot of Figure 16. The key result is that both

series comove most of the time, which provides an external validation to the dynamics of the

volatility shock and the estimation in general. Both series suggest a drop in volatility during

the early 2000s which then peaks before the financial crisis. During the financial crisis, there

is a sharp increase in the volatility measure.

F.3 Robustness Checks

The three robustness checks are now described in detail.

F.3.1 Additional Observable: Credit Spread

One advantage of the particle filter is that it can handle more observables than shocks. To

provide an example of flexibility of the approach, I include credit spreads as an additional

observable in the observation equation as a robustness check. The spread is calculated as

the difference between the BAA bond yield and a 10 year Treasury bond. The adapted

observation equation is:Output Growtht

Leveraget

Credit Spreadt

 =


100 ln

(
Yt
Yt−1

)
ϕt

400Et(R
K
t+1 −Rft+1)

+ ut, (132)

36The construction follows Nuno and Thomas (2017). I extend the series until 2014:Q4 to match the horizon
of the quantitative exercise. The obtained series is then linearly detrended.
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Figure 15: Filtered median of leverage and output growth is the blue line together with
its 68% confidence interval. The observables are shadow bank leverage and
(demeaned) real quarter-on-quarter output growth. The red line corresponds to
the fourth quarter of 2008:Q4.

where the risk free rate is defined as Rft+1 = it/Πt+1.

Figure 17 compares the baseline observation equation to a scenario with credit spreads

as additional observable. Even though there are some changes for the filtered series relative

to the baseline scenario with two series, the estimated probability of a run still predicts a

strong build-up before 2008 and that the run itself occurred in 2008:Q4. However, it should

be noted that the filter gives now a much higher run probability. The underlying reason is

that the dynamics of the TFP shock are different when spreads are included. The level of

TFP is elevated to the baseline scenario, which increases the security holdings of financial

intermediaries as well as the overall level. This elevated level of TFP contributes to a boom

and increases the run probability.

18 compares the dynamics of the credit spread with three observables to the baseline.

While it highlights that the data is now (unsurprisingly) much better captured, the prediction
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Figure 16: External validation of the estimation. Figure compares the filtered volatility
series (blue solid line) with its 95% CI (grey shaded area) to a data proxy, which
is a measure of cross-sectional variance of industry level TFP (black dashed line).
The deviations from each volatility series mean are measured in their respective
unconditional standard deviation. The red line indicates the fourth quarter of
2008.

of the baseline model for the credit spread is also mostly in line with the data. This provides

another external validation of the estimation as credit spreads are a key variable.

F.3.2 Alternative Measurement Error

I choose a rather higher measurement error with 25% of the sample variance for two reasons.

First, the leverage series is potentially very noisy because variables related to the shadow

banking sector are hard to measure exactly. Second, the computational requirements to run

the global solution method requires to exclude some important model elements that help to

match the data (e.g. habit or persistence for investment). As a robustness check, I include

now a scenario with a measurement of 10% to check how robust the results are, as shown in

Figure 17. The dynamics are quite similar to the baseline. There is a strong increase in run

risk prior to 2008 and the filter locates a run to 2008:Q4. One difference is that there is a

larger increase in the run risk around 2000.

F.3.3 Economic Activity Post 2009

Figure 17 compares the behavior of key time series if no shocks hit the economy beyond

2009. The average GDP growth rate between 2010 and 2014 has been smaller due to the

shocks. Therefore, the additional shocks help to generate a slower recovery than the model
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Figure 17: Comparison of the baseline estimation to alternative specifications, in which the
measurement error is lowered to 10%, the credit spread is included as additional
variable and no shocks hit the economy post 2009. The solid blue line shows the
filtered median with its 68% confidence interval (grey shaded) for the baseline.
The dash-dotted green line shows the filtered median for a lower measurement
error of 10%. The dashed black line shows the filtered median if the credit spread
is included as additional observable. The dotted red line shows the path from
2010, in which no shock post 2009 materializes. Note that for the third plot the
weight of the run regime is shown. The scales are either percentage deviations
from the stochastic SS (%∆), deviations from the stochastic SS measured in the
unconditional variance of the variables, annualized percent, percent, or the level.

alone would suggest. Output would be -1% below its steady state value in this counterfactual

scenario without shocks compared to -4% in the actual estimation. This points out that the

model does not have enough persistence in isolation. The shocks also help to keep leverage
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Figure 18: External validation of the credit spread and alternative model specification.
The blue solid line and shaded area shows the filtered credit spread series for
the baseline specification with output growth and leverage as observables. The
red dashed line and shaded area shows the same series for a scenario with credit
spread as additional observable. The black dash-dotted line shows the data,
which is the spread between the BAA yield and the 10 year government bond.
The data proxy, which is a measure of cross-sectional variance of industry level
TFP, is the black dashed line. The level of the data is shifted by 0.7 percentage
points to account for the difference between the simulated mean of the model
and the data.

levels down. Leverage would be around 14 instead of 12 as in the actual data. This disparity

could potentially be attributed to the changes in the regulatory environment, which is not

accounted for in the model.

F.4 Macroeconomic Tail Risk and Multimodality

The increase in the run probability induces substantial macroeconomic downside risk. To

better understand the downside risk, I evaluate the joint one-quarter-ahead distribution of

output growth and investment growth. Figure 19 shows a contour plot of the one-quarter-

ahead joint distribution of the variables from 2008:Q1 until 2009:Q4. It shows that the

multimodality arises due to the run equilibrium. While most mass is on the no run equilibrium

with GDP growth centered around 0, there is significant tail risk of a large fall in output due

to a run. This is the slighlty blue area around -2.5% GDP growth and investment growth

in the charts for the quarters in 2008. After the run, the distribution is overwhelmingly

unimodal as there is no financial fragility. The model can explain the fall in GDP 2008:Q4

with a run because its 2008:Q4 forecast conditional on 2008:Q3 allows for a large fall in
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Figure 19: The contour plots displays the one-quarter-ahead joint distribution of GDP
growth and investment growth over time. It shows that the multimodality arises
due to the run equilibrium. GDP growth is on the horizontal axis, while invest-
ment growth is on the vertical axis. Yellow indicates a high density, while dark
blue indicates a low density The red square shows the actual data realization in
the forecasted period. The forecasts are conditioned on the median realization.

output. However, the run lacks some persistence to explain the two data realizations in

2009:Q1 and 2009:Q2.

The analysis is the structural equivalent to the large body of literature on growth-at-risk

starting with Adrian et al. (2019), where the downside risk over time is evaluated. Recent

reduced-form empirical approaches also suggest that the downside risk comes from a bimodal

distribution, in line with my findings (see e.g Adrian et al., 2021, Caldara et al., 2021 and

Mitchell et al., 2021). The work most closely related is that of Adrian et al. (2021), who es-

timate the conditional joint distributions of economic fundamentals and financial conditions.

Similarly to the predictions in the model, they find the occurrence of a second equilibrium

for 2008:Q4 conditional on 2008:Q3. They also find that the probability of the normal equi-

librium is higher in line with these results.
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G Monetary and Macroprudential Strategies: Additional Re-

sults

G.1 Montary Policy with Financial Considerations: Ex-ante and ex-post

Components

One challenge with analyzing leaning-against-the-wind is the stability since the solution pro-

cedure explodes once the level of κs is sufficiently large. To overcome this problem, I impose

the leaning-against-the-wind component only at the relevant parts of the state space. In

other words, I exclude the rule from areas of the state space, which are never or only very

rarely visited. In particular, I restrict that net worth needs to be sufficiently large, securities

need to be below some upper bound, leverage needs to be inside a range associated with

financial stability, the volatility shock is sufficiently small and the TFP shock is sufficiently

large: Nt > 0.124, St < 8.8739, 9 < ϕ < 40, ξ < 0.0561, At > 0.4872. This step allows to

solve the model with an interestingly strong leaning-against-the-wind as the code otherwise

does not converge.

To further investigate the connection between the ex-ante and ex-post components, Figure

20 compares the impact of the different components of the modified policy rule on welfare

and financial stability. The response to the securities κs is varied between 0 and the optimal

Figure 20: The figure shows the welfare and annual run probability under various policies.
The monetary policy rule (blue solid) is compared to versions that only use its
components. Only leaning-against-the-wind ex-ante is shown as dashed red line,
while the commitment to a loose ex-post policy is shown as black dash-dotted
line. The parameter of the financial stability element κs is varied between [0, κopts ]
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Figure 21: The figure shows the impact of an unanticipated monetary policy shock (25 bps)
on the economy and financial stability during a boom scenario. The difference is
either expressed in percentage points difference or percent relative to a scenario
without a monetary policy shock is displayed. To generate the boom scenario, a
sequence one-standard-deviation negative volatility shocks hits the economy in
period 1 until period 8. Afterwards, no shock materializes.

value κopts . This figure extends the subplot of Figure 9, as it now highlights the contribution of

ex-ante leaning and ex-post commitment to loosening. The figure underlines that most gains

come from a credible commitment to loose policy after a crisis. Leaning-against-the-wind in

isolation can reduce the run probability only slightly and has therefore only a small positive

on welfare.

Note that this result is robust to other specifications for the leaning-against-the-wind part

such as changing the target value of securities SB and or limiting the maximum contribution

from leaning-against-the-wind in the policy rule. These experiments confirm the finding that

leaning-against-the-wind has a positive, albeit small, effect.
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G.2 Transmission of a Monetary Policy Shock

This section discusses the transmission of an unanticipated monetary policy shock during a

boom. For this analysis, I assume that agents did not expect such a shock and do not expect

a monetary policy shock in the future. The shock enters the Taylor rule (without a response

to financial conditions) as follows:

Rt = max

{
RI
(
Πt
Π

)κΠ (φmct
φmc

)κy
, 1

}
exp (mpt), (133)

where mpt is the monetary policy shock.

The following simulation assesses the transmission of an unanticipated interest rate hike

during a boom. To create the boom, I assume that a sequence of one-standard-deviation

negative volatility shocks hits the economy in period 1 until period 8 (starting from the

stochastic steady state). The monetary policy shock, which is normalized to an annualized 25

basis points, occurs in period 5 (in the midst of the boom). Figure 21 shows the difference in

the path between a scenario with and without a monetary policy shock. The contractionary

monetary policy shock reduces output and inflation, while the interest rate increases, as

expected. Initially, the monetary policy shock increases financial fragility, as the difference

in the run probability goes up. The true run probability, that is if the unanticipated shock

would have be known, increases by an additional 0.4% percentage points in period 4. This

effect then reverses and financial stability improves as a result of the monetary policy hike.37

Furthermore, it also lowers total securities as well as net worth of the agents.

G.3 Macroprudential Policy: Ex-ante Component

I now also analyze separately the effects of ex-ante and ex-post macroprudential policy.

The macroprudential authority responds to the security holdings of intermediaries similar

to leaning-against-the-wind. If the security holdings are above the same target value, the

central bank raises the tax. Otherwise, the tax is zero. The rule τϕt is given as:

τϕt = 1StB>SB

[(
SBt
SB

)τs
− 1

]
, (134)

where τs is the response to deviations from the target value SB set by the macroprudential

authority. The target value SB is calibrated to the same value as the other rules.

Figure 22 compares the leverage tax to its version with only the ex-ante component. The

response to the securities τs is varied between 0 and the lowest value that reduces the run

frequency to zero. An important takeaway is that ex-ante macroprudential policy in isolation

is rather effective in increasing financial stability, which is also in line with GKPb. This results

contrasts the findings for monetary policy with a financial stability response, where the ex-

ante effects were considerably smaller. In fact, the leverage tax can considerably further

diminish the run probability if I would set τs > τ opts . This also has important implications

37This is a one-time shock. It takes longer until the run probability reverses for a more persistent shock.
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Figure 22: The figure shows the welfare and annual run probability for the leverage tax
(blue solid) and a version with only an ex-ante component (dashed red line).
The monetary policy rule is compared to versions that only use its components.
The parameter of the response τs is varied between [0, τ opts ]

for the findings of the paper. While the results suggest that monetary policy can be a good

substitute for macroprudential policy, this only holds if the authorities can credibly commit

to ex-post policies.
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