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Abstract

Motivated by the build-up of shadow bank leverage prior to the financial crisis of

2007-2008, I develop a nonlinear macroeconomic model featuring excessive leverage

accumulation and endogenous financial crises to capture the observed dynamics and to

quantify the build-up of financial fragility. I use the model to illustrate that extensive

leverage makes the shadow banking system runnable, thereby raising the vulnerability

of the economy to future financial crises. The model is taken to U.S. data with the

objective of estimating and analyzing the probability of a run in the years preceding the

financial crisis of 2007-2008. According to the model, the estimated risk of a run was

already considerable in 2005 and kept increasing due to the upsurge in leverage. Using

counterfactual scenarios, I assess the impact of alternative monetary and macroprudential

policy strategies on the estimated build-up of financial fragility.
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1 Introduction

The financial crisis of 2007-2008 was, at the time, the most severe economic downturn in the

US since the Great Depression. Although the origins of the financial crisis are complex and

various, the financial distress in the shadow banking sector has been shown to be one of the

key factors.1 The shadow banking sector, which consists of financial intermediaries operating

outside normal banking regulation, expanded considerably before the crisis. Crucially, there

was an excessive build-up of leverage (asset to equity ratio) for these unregulated banks. The

collapse of the highly leveraged major investment bank Lehman Brothers in September 2008

intensified then a run on the short-term funding of many financial intermediaries, with very

severe repercussions for the real economy in the fourth quarter of 2008. Figure 1 documents

these stylized facts about GDP growth and shadow bank leverage using balance sheet data

from the Flow of Funds and Compustat.

In this paper, I build a new nonlinear quantitative macroeconomic model with financial

intermediaries and runs to capture the observed dynamics as well as to quantify the en-

dogenous build-up of financial fragility. The possibility of a run on the financial system is

state-dependent and relies on economic circumstances. Specifically, risk-shifting incentives for

intermediaries can result in extensive leverage accumulation, which makes the financial sys-

tem runnable and thereby raises the vulnerability of the economy to a financial crisis. I then

take the model to the data to obtain a novel structural estimate of the endogenous financial

fragility around the financial crisis of 2007-2008. For this purpose, I first fit the framework

to salient features of the U.S. economy and the shadow banking sector. I then condition the

model on selected data to estimate the endogenous probability of a run through the lens of

a structural nonlinear model. My results suggest that the estimated financial fragility and

the economic downside risk increase considerably from 2005 onwards and peak in 2008 due

to rising shadow bank leverage. Using counterfactual scenarios, I assess the impact of alter-

native monetary and macroprudential policy strategies on the estimated build-up of financial

fragility and the occurrence of a financial crisis in 2007-2008. The counterfactual suggests

that macroprudential policy limiting leverage sufficiently would have avoided the run on the

financial sector in 2008 itself.

The framework is designed to evaluate and quantify the build-up of financial fragility

because it features endogenous boom-bust dynamics and reconciles key macroeconomic as

well as financial features of the great financial crisis. The dynamics rely on the interaction

among two features that correspond well to the shadow banking sector. First, the financial

intermediaries face risk-shifting incentives and volatility shocks, which allows me to account

for extensive leverage accumulation similar to Adrian and Shin (2014) and Nuño and Thomas

(2017). Second, runs on the financial sector are endogenous since they are state-dependent,

as in Gertler, Kiyotaki and Prestipino (2020b).

The boom-bust mechanism is as follows. First, a period of low volatility reduces the risk-

shifting incentives of financial intermediaries, which results in substantially elevated leverage.

1See e.g. Adrian and Shin (2010), Bernanke (2018), Brunnermeier (2009) and Gorton and Metrick (2012).
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Figure 1: The upper graph shows two measures of U.S. shadow bank book leverage. The first measure is based
on balance sheet data from the Flow of Funds (left axis). The alternative one uses Compustat data
(right axis). The leverage series rely on the book value of equity. Appendix A shows the details.
The lower graph shows the quarter on quarter real output growth rate in percent.

Subsequently, credit and output also expand. At the same time, the financial sector’s loss

absorbing capacities are diminished as the intermediaries have relatively low equity buffers.

A negative shock can then cause a self-fulfilling roll-over crisis. In particular, an abrupt stop

to the roll over of deposits forces intermediaries to liquidate their balance sheet for a firesale

price, which then pushes the intermediaries into bankruptcy. This run on the financial sector

results, then, in a sharp contraction in output as observed in the great financial crisis in the

fourth quarter of 2008.

Importantly, the framework accounts for key empirical observations concerning financial

crises as a run is preceded by a credit boom (Schularick and Taylor, 2012), low pre-crisis credit

spreads (Krishnamurthy and Muir, 2017) and elevated shadow bank leverage as observed

around 2008 (Adrian and Shin, 2010). The boom-bust dynamics also feature a volatility

paradox, in the spirit of Brunnermeier and Sannikov (2014). Another important implication

is that not every boom ends in a bust in line with recent empirical evidence of Gorton

and Ordonez (2020). The quantitative model also sheds light on the connection between

monetary policy and financial crisis in the current low interest rate environment. The zero

lower bound, which limits potential rate cuts during a run, increases the likelihood of an

endogenous financial crisis as well as the real repercussions of such a crisis. The build-up of

financial fragility in combination with the threat of encountering the zero lower bound results

in deflationary pressure during a boom, and creates substantial downside risk for inflation in

line with López-Salido and Loria (2020).
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The model is taken to the data to obtain a structural estimate of the endogenous build-

up of financial fragility and economic downside risk in the U.S. around the great financial

crisis. The estimation relies on a two step procedure. In a first step, the nonlinear model

is calibrated to key features of the U.S. and the shadow banking sector. In a second step,

the filter estimates the endogenous probability of a run over time conditional on the path

of shadow bank leverage and real output growth. In particular, I employ a particle filter

because such a filter can account for the nonlinear setup with endogenous financial crisis and

the zero lower bound.

I estimate that the probability of a financial crisis starts to increase significantly from

2005 onwards and peaks in 2008. The framework predicts in 2008:Q3 that the risk of a

roll-over crisis in the next quarter is close to 5%, which would correspond to 20% in annual

terms. The estimation highlights the importance of low volatility because it causes the rise in

leverage and makes the financial system prone to instability. While variations in total factor

productivity explain most output deviations, the large contraction in economic activity in

2008:Q4 is explained by a run on the financial sector. The run alone explains around 70%

percent of the severe output drop in 2008:Q4, while the contractionary shocks account for the

remaining 30%, as shown in a counterfactual. This emphasizes the importance of considering

nonlinear dynamics in accounting for the data. The framework also formalizes the evolution

of macroeconomic downside risk over time. Specifically, the possibility of an endogenous run

on the financial system creates a multimodal distribution for output forecasts.

The quantitative analysis also offers a new angle for appraising policy counterfactuals

with regard to financial fragility. Using the results from the estimation, the counterfactual

paths under alternative policies can be constructed. I investigate the impact of a monetary

as well as macroprudential policy instrument on the build-up of financial fragility prior to

2008 and the occurrence of the financial crisis. With regard to monetary policy, I evaluate a

“leaning against the wind” policy, which prescribes a tighter monetary policy stance during

a credit boom to lower financial fragilities. The analysis shows that a “leaning against the

wind” would have reduced the probability of a run slightly during its peak in 2008. However,

I find that it would not have succeeded in averting the run on the financial system. The

macroprudential instrument follows the idea of a leverage tax for shadow banks as proposed

in the “Minneapolis Plan to End Too Big to Fail” drawn up by the Minneapolis Federal

Reserve Bank. The leverage tax, which is a tax on deposit holdings, reduces financial fragility

more substantially. The counterfactual analysis suggests that such a macroprudential policy

could have reduced the build-up of financial fragility and could have averted the run on the

financial sector in 2008:Q4 itself.

The approach outlined in this paper for estimating the endogenous financial fragility based

on a structural model with financial crises is general and can be applied to related models

or other countries. It provides a model-based growth-at-risk approach that links current

macrofinancial conditions to the distribution of future output growth using a microfounded

nonlinear framework with endogenous financial fragility. The developed structural approach

also provides a new tool to evaluate different policy counterfactuals. It allows me to analyze
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the counterfactual path of the estimated build-up of financial fragility and economic downside

risk under alternative scenarios.

Related Literature Even though runs on the financial system and leverage cycles have

both been analyzed independently, I connect these approaches to explain the run on the

financial sector in the financial crisis of 2007-2008. Gertler, Kiyotaki and Prestipino (2020b)

pioneer the incorporation of self-fulfilling runs into macroeconomic models to explain financial

crises.2 My paper differs in that I focus on the dynamics of leverage and show how elevated

leverage endogenously creates the scenario of a boom going bust. Introducing risk-shifting

incentives and volatility shocks along the lines of Adrian and Shin (2014) and Nuño and

Thomas (2017) as a new channel makes it possible to account for the build-up of leverage

prior to the financial crisis and to connect it to the financial collapse.3 Another strength

is that the developed framework provides boom-bust dynamics in a parsimonious way that

lends itself to a quantitative analysis and an estimation of financial fragility.

The paper also adds to the literature on the connection between endogenous financial

crises and monetary policy (e.g. Boissay et al., 2021; Gertler, Kiyotaki and Prestipino,

2020b). The novelty lies in the focus on the low interest rate environment and the zero lower

bound in connection with financial crises. My work is also related to other papers that incor-

porate runs into quantitative macroeconomic frameworks such as Amador and Bianchi (2021),

Faria-e-Castro (2019), Ferrante (2018), Gertler, Kiyotaki and Prestipino (2020a) De Groot

(2021), Ikeda and Matsumoto (2021), Hakamada (2021), Mikkelsen and Poeschl (2019), Paul

(2020) and Poeschl (2020). Other approaches capturing credit booms that go bust include

asymmetric information (e.g. Boissay, Collard and Smets, 2016), optimistic beliefs (e.g. Bor-

dalo, Gennaioli and Shleifer, 2018) and learning (e.g. Boz and Mendoza, 2014; Moreira and

Savov, 2017). While this paper is about the distress in the financial sector, other studies such

as Justiniano, Primiceri and Tambalotti (2015), Guerrieri and Lorenzoni (2017) and Kaplan,

Mitman and Violante (2020) emphasize the role of housing.

I further complement the literature by providing a (real-time) estimate for the probability

of a financial crisis and downside risk. To capture the model’s nonlinearities and state-

dependencies in this analysis, I build on the literature that empirically assesses nonlinear

models with multiple equilibria. Following Aruoba, Cuba-Borda and Schorfheide (2018),

I use a particle filter (Fernández-Villaverde and Rubio-Ramı́rez, 2007) that is adapted to

account for the multiplicity of equilibria.4 In the literature on sovereign default, Bocola

2Gertler and Kiyotaki (2015) and Gertler, Kiyotaki and Prestipino (2016) are important preceding contri-
butions that integrate bank runs into standard macro models. Cooper and Corbae (2002) is an early study
that features a dynamic equilibrium model with runs that can be interpreted as a roll-over crises.

3The risk-shifting incentives have a very different impact on leverage compared to that of a run-away con-
straint, where an intermediary can divert a fraction of assets that cannot be reclaimed, as used in Gertler,
Kiyotaki and Prestipino (2020b). Risk-shifting incentives combined with the volatility shock generate procycli-
cal leverage, while leverage is normally countercyclical with the run-away constraint. The run-away constraint
can be reconciled with the evidence for credit booms that generate busts if intermediaries are overly optimistic
about future news for instance. An alternative approach to obtain procyclical leverage is to have a sticky net
worth accumulation of financial intermediaries (Ikeda and Matsumoto, 2021).

4I adjust the filter to handle not only multiplicity of equilibria, but also the fact that the equilibrium
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and Dovis (2019) use a particle filter to estimate the likelihood of a government default.

Faria-e-Castro (2019) applies a particle filter to conduct a counterfactual with countercyclical

capital requirements in a model that features bank runs. What renders my work novel

is the estimation of the endogenous probability of a financial crisis through the lens of a

nonlinear structural model. In that sense, my paper is the structural counterpart to the large

growing body of empirical work on growth-at-risk (e.g. Adrian, Boyarchenko and Giannone,

2019), and to the work on the role of multimodality in future output growth forecasts as in

Adrian, Boyarchenko and Giannone (2021), Caldara et al. (2020) and Mitchell, Poon and

Zhu (2021).5 Importantly, my model-based approach provides a new tool to appraise policy

counterfactuals. It offers a way of measuring the impact of a counterfactual scenario on the

estimated endogenous build-up of financial fragility and the occurrence of a financial crisis.

Layout The rest of this paper is organized as follows. Section II outlines the nonlinear

macroeconomic model, conditions for a run on the financial system and the nonlinear solution

method. I present the calibration and quantitative properties in Section III. I then move on,

in Section IV, to analyze and estimate the build-up of financial fragility and macroeconomic

downside risk. The impact of counterfactual policies on the estimated build-up of financial

fragility is analyzed in Section V. The final section concludes.

2 Model

The setup is a dynamic stochastic general equilibrium model with a financial sector that

faces endogenous financial crises. It is embedded in a New Keynesian setup with a zero lower

bound on nominal interest rates. The main features are a leverage constraint for financial

intermediaries and endogenous runs on the financial sector. The financial intermediaries

in the model can be best thought of as shadow banks, since they are unregulated and not

protected by deposit insurance.6

Financial intermediaries have risk-shifting incentives based on Adrian and Shin (2014) and

Nuño and Thomas (2017). They have to choose between two securities that face idiosyncratic

shocks to their return. Importantly, the two assets differ in the mean and standard deviations

of the idiosyncratic shock. Limited liability, which protects the losses of the intermediaries,

distorts the choice between the two securities as it limits the downside losses. This deter-

mines leverage endogenously. The other key element is that the financial sector occasionally

faces system-wide runs, which are state-dependent, or in other words endogenous, similar to

Gertler, Kiyotaki and Prestipino (2020b). The occurrence of the run depends on fundamen-

tals and in particular on the leverage of the financial sector. During a run, households stop

probabilities are endogenously time-varying. This adjustment is necessary to account for and measure the
probability of runs.

5The developed model also provides the microfoundation for more stylized macroeconomic modeling ap-
proaches that capture the macroeconomic downside risk with an ad-hoc specified vulnerability function that
interacts with the model equations, as in, e.g., Adrian et al. (2020).

6While assuming the absence of deposit insurance is a characteristic in line with shadow banks, a run could
also occur in the presence of a deposit insurance system provided that the insurance is imperfect.
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rolling over their deposits.7 This forces the financial intermediaries to sell their assets. The

asset price drops significantly as all intermediaries sell at the same time, justifying the run

in the first place.

The rest of the economy follows a canonical New Keynesian model with the zero lower

bound. There exist intermediate goods firms, retailers and capital goods producers. The

retailers face nominal rigidities via Rotemberg pricing, and the capital goods producers face

investment adjustment costs. Monetary policy follows a Taylor rule subject to the zero lower

bound. The model featuring endogenous multiple equilibria and a zero lower bound is solved

in its nonlinear specification with global methods and later also taken to the data.

2.1 Household

There is a large number of identical households. The representative household consists of

workers and financial intermediaries that have perfect insurance for their consumption Ct.

Workers supply labor Lt and earn the wage Wt. Financial intermediaries die with a probabil-

ity of 1−θ and return their net worth to the household to avoid self-financing. Simultaneously,

new intermediaries enter each period and receive a transfer from the household. The house-

hold owns the non-financial firms, from where it receives the profits. The variable Ξt captures

all transfers between households, financial intermediaries and non-financial firms.

The household is a net saver and has access to two different assets that are also actively

used. The first option is to provide one-period deposits Dt to financial intermediaries that

promise to pay a predetermined gross interest rate R̄t. However, the occurrence of a run

in the following periods alters the intermediary’s ability to honor its commitment. In this

scenario the household receives only a fraction x?t , which is the recovery ratio, of the promised

return. The gross rate Rt is thus state-dependent:

Rt =

R̄t−1 if no run takes place in period t

x?t R̄t−1 if a run takes place in period t
(1)

Securities are the other option. I distinguish between beginning-of-period securities Kt that

are used to produce output and end-of-period securities St. The households’ end of period

securities SHt give them a direct ownership in the non-financial firms. The household earns the

stochastic rental rate Zt. The household can trade the securities with other households and

intermediaries at the market clearing price Qt. The securities of households and financial

intermediaries, where the latter are denoted as SBt , are perfect substitutes. Total end-of-

period capital holdings St are:

St = SHt + SBt . (2)

The households are less efficient in managing capital holdings, as in the framework of Brun-

7There is no explicit distinction in the model between households and typical lenders on the wholesale
market, such as commercial banks in the model. Poeschl (2020) discusses this assumption and shows that a
distinction between retail and wholesale banks separately can result in amplification under some conditions.
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nermeier and Sannikov (2014). Following the shortcut of Gertler, Kiyotaki and Prestipino

(2020b), capital holdings are costly in terms of utility. The costs are given as:

UCt =
Θ

2

(SHt
St
− γF

)2
St, (3)

where Θ > 0 and γF > 0. An increase in households’ capital holdings increases the utility

costs, while an increase in total capital holdings decreases the utility costs (if the condition

SHt /St − γF > 0 holds). The household maximizes its utility function

Ut = Et

{ ∞∑
τ=t

βτ−t
[

(Cτ )1−σh

1− σh
− χL1+ϕ

τ

1 + ϕ
− Θ

2

(SHτ
Sτ
− γF

)2
SHτ

]}
, (4)

subject to the budget constraint:

Ct = WtLt +Dt−1Rt −Dt + Ξt −QtSHt + (Zt + (1− δ)Qt)SHt−1. (5)

The first order conditions with respect to the two assets can be combined to:

βEtΛt,t+1Rt+1 = βEtΛt,t+1
Zt+1 + (1− δ)Qt+1

Qt + Θ(SH,t/St − γF )/%t
, (6)

where %t is the marginal utility of consumption and βEtΛt,t+1 = βEt%t+1/%t is the stochastic

discount factor. This emphasizes the existence of a spread between the return on capital and

deposit rates due to the utility costs.

2.2 Financial Intermediaries

The financial intermediaries’ leverage decision depends on the risk-shifting incentives and the

possibility of a run on the financial system. I first present the risk-shifting incentives and

then incorporate the possibility of a run on the financial sector in the decision problem.

2.2.1 Moral Hazard through Risk-Shifting Incentives

The intermediaries face a moral hazard problem due to risk-shifting incentives that limits

their leverage, as in Adrian and Shin (2014) and Nuño and Thomas (2017). They can invest

in two different securities with distinct risk profiles. Limited liability protects the financial

intermediaries’ losses in case of default and creates incentives to choose a strategy that is

too risky from the depositors’ point of view. This results in an incentive and a participation

constraint, which the financial intermediaries face in their maximization problem. This for-

mulation microfounds a value-at-risk constraint - a common risk management approach for

shadow banks - and corresponds to a contracting problem familiar from corporate finance

theory.8

8Adrian and Shin (2010) provide evidence on the value-at-risk constraint and the leverage decision of
security broker-dealers, which included, at the time, major Wall Street investment banks such as Lehman
Brothers.
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There is a continuum of financial intermediaries indexed by j, who intermediate funds

between households and non-financial firms. The intermediaries hold net worth N j
t and

collect deposits Dj
t to buy securities SBt from the intermediate goods producers:

QtS
Bj
t = N j

t +Dj
t , (7)

and the financial intermediaries’ leverage is defined as follows:

φjt =
QtS

B,j
t

N j
t

. (8)

Securities with different risk profiles After purchasing the securities, the financial

intermediary converts, at the end of the period, the securities into efficiency units ωt+1 that

are subject to idiosyncratic volatility similar to Christiano, Motto and Rostagno (2014).

The arrival of the idiosyncratic shock is i.i.d over time and intermediaries. In particular,

the intermediary has to choose between two different conversions - a good security and a

substandard security - that differ in their cross-sectional idiosyncratic volatility. The good

type ω and the substandard type ω̃ have the following distinct distributions:

logωt = 0, and log ω̃t
iid∼ N

(
−σ2

t − ψ
2

, σt

)
, (9)

where ψ < 1 and σt, which affects the idiosyncratic volatility, is an exogenous driver specified

below. As can be seen, I abstract from idiosyncratic volatility for the good security. This

implies that its distribution is a dirac delta function, where ∆t(ω) denotes the cumulative

distribution function. The substandard security follows a log normal distribution, where

Ft(ω̃t) is the cumulative distribution function.

The good security is superior as it has a higher mean and a lower variance due to ψ < 1:9

E(ω) = ω = 1 > e−
ψ
2 = E(ω̃), (10)

V ar(ω) = 0 < [eσ
2 − 1]e−ψ = V ar(ω̃). (11)

However, the substandard security features a higher upside risk as a high realization of

the idiosyncratic shock ω̃ results in a large return.10 Figure 2 shows the distributions and

highlights the difference in mean, variance and upside risk.

The variable σt is labeled as volatility as it affects the relative cross-sectional idiosyncratic

volatility of the securities. In particular, it changes the upside risk, while preserving the mean

spread E(ω)− E(ω̃).11 Volatility σt is exogenous and follows an AR(1) process:

σt = (1− ρσ)σ + ρσσt−1 + σσεσt , (12)

9More formally, I assume that ∆t(ω) cuts Ft(ω̃) once from below to ensure this property. This means that
there is a single ω∗, such that (∆t(ω)− F̃t(ω))(ω − ω∗) ≥ 0 ∀ω.

10Ang et al. (2006) find empirically that stocks with high idiosyncratic variance have low average returns.
11This result does not depend on the assumption that the good security does not contain idiosyncratic risk.

For instance, the following distribution gives the same result: log ω̃t
iid∼ N(−0.5(ησ2

t −ψ),
√
ησt), where η < 1.

The mean is preserved, but the variance of the substandard security responds more strongly.
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Figure 2: Trade-off between mean return, upside risk and limited liability. The blue line depicts the PDF
of the substandard security (log normal distribution) and its mean (blue dashed dotted). The red
dashed line is the (mean) return of the good security (dirac delta distribution). The green dash-
dotted line is the default threshold value ω̄. The blue and green shaded areas indicate the area
associated with the upside risk and protection from downside risk via limited liability, respectively.

where εσt ∼ N(0, 1).

The intermediary earns the return RK,jt on its securities that depends on the stochastic

aggregate return RKt and the realized idiosyncratic volatility conditional on its conversion

choice:

RKjt = ωjtR
K
t = RKt if good type (13)

RKjt = ω̃jtR
K
t if substandard type (14)

The aggregate return depends on the asset price and the gross profits per unit of effective

capital Zt:

RK,t = [(1− δ)Qt + Zt]/Qt−1. (15)

Based on this, a threshold value ωjt for the idiosyncratic volatility defines when the interme-

diary can exactly cover the face value of the deposits:

ωjt =
R̄Dt−1D

j
t−1

RktQt−1S
Bj
t−1

. (16)

While the threshold level is independent of the type of the security, the substandard security

is more likely to fall below this value due to the lower mean and higher variance.
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Risk-shifting incentives and limited liability As it stands so far, the financial enti-

ties would choose to invest in the good security as it has a higher mean and lower variance.

However, the financial entities are protected by limited liability. Limited liability distorts the

choice between the securities and creates risk-shifting incentives for the financial intermedi-

aries. If the realized idiosyncratic volatility is below ωjt , the financial intermediary declares

bankruptcy. In such a case of default, the households can seize all the assets, but they do

not receive the promised repayment due to limited liability. Therefore, limited liability limits

the downside risk of the substandard security, while its upside risk is unaffected. Figure 2

highlights this feature.

To avoid an investment in the substandard security, the financial intermediary faces an

incentive constraint that deals with the risk-shifting incentives resulting from limited liabil-

ity. The incentive constraint ensures the conversion in the good security only. The limited

liability friction resembles a put option for the financial intermediary in its contract with the

household. If the intermediary defaults, the household receives only the return on the assets,

or put differently, the intermediary has the option to sell its asset at strike price ωjt+1. Thus,

the substandard security contains a put option π̃t that insures the intermediary against the

downside risk:

π̃t(ω
j
t+1) =

∫ ωjt+1

(ωjt+1 − ω̃)dFt(ω̃). (17)

Based on this assumption, the put option of the substandard technology is larger than the

put option of the good technology at a given strike price ωjt , so that π̃t(ω
j
t+1) > πt(ω

j
t+1) = 0.

In particular, the put option of the standard security πt(ω
j
t+1) is zero due to the absence

of idiosyncratic risk. Thus, there is a trade-off between the higher mean return of the good

security and the higher upside risk of the substandard security. This results in an incentive

constraint:

EtβΛt,t+1

{
θV j

t+1(ω, SBjt , D
j
t ) + (1− θ)[RKt+1QtS

Bj
t −D

j
t ]
}
≥ (18)

EtβΛt,t+1

∫ ∞
ωjt

{
θVt+1(ω, SBjt , D

j
t ) + (1− θ)[RKt+1QtS

Bj
t ωjt+1 −D

j
t ]
}
dF̃t+1(ω),

where V j
t+1(ω, SBjt , D

j
t ) is the value function of a financial intermediary. The LHS is the

intermediary’s gain of the standard securities and the RHS is the gain of deviating to the

substandard security. It is important to note that the good security is the only choice if the

incentive constraint holds.

In addition to this, the return on deposits needs to be sufficient such that households

provide deposits to intermediary j. The participation constraint can be directly derived from

the households’ first-order conditions (FOC) with respect to deposits:

βEtΛt,t+1R̄
D
t ≥ 1. (19)

The return on deposits is R̄Dt is predetermined as there are no defaults for now.
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Financial intermediaries’ contracting problem The intermediary maximizes the value

of its entity Vt subject to the incentive and participation constraint (equations 18 and 19):

V j
t (N j

t ) = max
SBjt ,D̄t

EtΛt,t+1

[
θV j

t+1(N j
t+1) + (1− θ)(RKt QtS

Bj
t − D̄

j
t )

]
, (20)

where N j
t is the intermediary’s net worth. The participation constraint and incentive con-

straints are both binding in equilibrium and can be simplified to

βEt
[
Λt,t+1R̄

D
t

]
= 1, and 1− e−

ψ
2 = Etπ̃

j
t+1, (21)

where the detailed derivation is left to Appendix C.

The incentive constraint shows the trade-off between higher mean return of the good se-

curity and the put option of the substandard security. This constraint forces the intermediary

to hold enough “skin in the game” and limits the leverage of the intermediary. The reason is

that the value of the put option Etπ̃
j
t+1 increases in leverage.

The participation and incentive constraint do not depend on intermediary-specific char-

acteristics so that the optimal choice of leverage is independent of net worth as shown in

Appendix C. Therefore, I can sum up across individual intermediaries to obtain the aggre-

gate values. Intermediaries’ aggregate demand for assets depends on leverage and net worth:

QtS
B
t = φtNt. (22)

The net worth evolution is as follows in the absence of runs. Surviving intermediaries retain

their earnings, while newly entering ones receive a transfer from households:

NS,t = RKt QtS
B
t−1 −RDt Dt, and NN,t = (1− θ)ζSt−1, (23)

where NS,t and NN,t are the net worth of surviving and new intermediaries, respectively.

Aggregate net worth Nt is given as Nt = θNS,t +NN,t.

2.2.2 Run on the Financial Sector and the Risk-Shifting Incentives

I now include the possibility of a run on the financial sector in the intermediaries’ contracting

problem. A run is a systemic event that affects all intermediaries. In particular, a run erad-

icates the net worth of all financial intermediaries, so that Nt = 0 and they stop operating.

The run itself and the probability of such an event alter the decision problem of the inter-

mediaries. The following part outlines the implications for the contracting problem, while

Appendix C contains the full derivation.

The financial intermediary can only continue operating or return its net worth to the

household in the absence of a run. The value function depends now on the probability pt

that a run takes place in the next period:

Vt(Nt) = (1− pt)Et
[
Λt,t+1(θVt+1(Nt+1) + (1− θ)(RKt QtSBt − D̄t))

∣∣∣no run

]
, (24)
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where Et[·|no run] is the expectation conditional on no run in t + 1. For ease of exposition,

a superscript denotes if the expectations are conditioned on the absence or occurrence of a

run, that is ENt [·] = Et[·|no run] and ERt [·] = Et[·|run]. The probability pt is endogenous and

state-dependent. Its derivation is described in detail in the next subsection.

The intermediaries’ commitment to repay the households is also changed. Due to limited

liability, households do not receive the promised repayments if a run occurs. Instead, house-

holds recover the gross return of the securities. Thus, the gross rate Rt is state-dependent:

Rt =

R̄t−1 if no run takes place in period t,

RKt Qt−1S
B
t−1/Dt−1 if a run takes place in period t.

(25)

The participation constraint includes the probability of a run as the intermediaries need

to compensate the households for the tail-event of a run:

(1− pt)ENt [βΛt,t+1R̄tDt] + ptE
R
t [βΛt,t+1R

K
t+1QtS

B
t ] = Dt. (26)

An increase in pt augments the funding costs as intermediaries need to compensate households

for the run risk. The incentive constraint is also directly affected:

(1− pt)ENt Λt,t+1R
K
t+1(θλt+1 + (1− θ))[1− e

−ψ
2 − π̃t+1] = (27)

ptE
R
t Λt,t+1R

K
t+1(e−

ψ
2 − ωt+1 + π̃t+1),

where λt is the multiplier on the participation constraint. The trade-off between higher mean

return and upside risk still prevails, which is displayed on the LHS in equation (27). This

trade-off is now weighted with the probability of surviving a run in case of investing in the

substandard security, which is displayed on the RHS. The substandard security offers the

possibility to survive a run as the idiosyncratic volatility ω̃it is drawn from a distribution. If

ω̃it > ωt, the financial intermediary can repay its depositors because it profits from the upside

risk of the substandard security.12 This channel increases the risk-shifting incentives, which

then counteracts the leverage accumulation via the incentive constraint to some extent.

The net worth of the financial intermediaries, who existed in the previous period, is zero

in the event of a run. However, new entities are entering due to transfers from households.

The net worth of the financial sector in a run period is given as:

Nt = NN,t = (1− θ)ζSHt if a run occurs in period t. (28)

The financial sector continues to rebuild in period t + 1 using retained profits and transfers

from households as usual, so that Nt+1 = θNS,t+1 +NN,t+1. As the financial sector starts to

rebuild right away, a run is already possible again in the next period.

12Investing in substandard securities is an outside equilibrium strategy, which allows a financial intermedi-
aries to survive a run in the event of a very high realization of the idiosyncratic shock. It is assumed that the
surviving intermediaries repay their depositors fully and return their remaining net worth to the households.
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2.3 Endogenous Runs and Multiple Equilibria

A financial crisis is an endogenous run on the financial sector, in which depositors stop

rolling over their deposits. The run is a self-fulfilling element because the model features

multiple equilibria in the spirit of Diamond and Dybvig (1983). The endogenous element

is that the existence of the run equilibrium depends on the aggregate state and especially

on the balance sheet strength of the financial intermediaries following Gertler, Kiyotaki and

Prestipino (2020b). Therefore, the multiplicity of equilibria - a “normal” and run one - occurs

only in some states of the world.

The multiplicity of equilibria originates from heterogeneous asset demand of households

and intermediaries. During normal times - that is in the absence of a run - households roll over

their deposits. Financial intermediaries and households demand securities and the market

clears at price Qt. This price can be interpreted as the fundamental price. The intermediary

can cover the promised repayments for the fundamental price:

[(1− δ)Qt + Zt]S
B
t−1 > R̄t−1Dt−1. (29)

In contrast to this, a run wipes out the entire existing financial sector, so that NS,t = 0.

Households cease to roll over their deposits in a run, causing that intermediaries need to

liquidate their entire assets to repay the households. However, this eliminates their demand

for securities, and households (plus the newly entering financial intermediaries) are the only

remaining agents that buy securities in a run. Subsequently, the asset price falls to clear the

market at a firesale price. The drop is particularly severe because it is costly for households

to hold large amounts of securities. This firesale price Q?t depresses the potential liquidation

value of intermediaries’ securities. As a consequence, a run can take place if the firesale

liquidation value is smaller than the households’ claims:

[(1− δ)Q?t + Z?t ]SBt−1 < R̄t−1Dt−1, (30)

where the superscript ? indicates the run equilibrium. Therefore, a run can occur if the

intermediaries do not have sufficient means to cover the claims of the households under the

firesale price Q?t . This is the case if the recovery ratio x?t , that is the firesale liquidation value

relative to the promised repayments, is below 1:

x?t ≡
[(1− δ)Q?t + Z?t ]SBt−1

R̄t−1Dt−1
< 1. (31)

The recovery ratio x?t partitions the state space into a safe and a fragile region. x?t > 1

characterizes the safe region, where the financial intermediaries can cover the claims under

the fundamental and firesale price. Therefore, runs are not possible and only the normal

equilibrium exists. By contrast, both equilibria coexist in the fragile region if x?t < 1. The

financial entities have only sufficient means to repay depositors under the fundamental price.

There is also a third scenario, in which the intermediaries cannot repay the depositors even

under the fundamental price, which is the case if [(1− δ)Qt + Zt]S
B
t−1 < R̄t−1Dt−1. While
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Figure 3: Illustration showing how the safe and fragile regions are dependent on leverage φt−1 and the volatility
shock εσt .

this third case is accounted and checked for, this scenario is neglected because the probability

of it occurring is infinitesimally small in the quantitative model.

The importance of leverage can be shown by rewriting the recovery ratio x?t :

x?t =
φt−1

φt−1 − 1

[(1− δ)Q?t + Z?t ]

Qt−1R̄t−1
. (32)

Elevated leverage levels make it more likely that the run equilibrium will occur. Furthermore,

a contractionary shock, such as an increase in volatility or a negative TFP shock, reduces the

return and can thus enable a run if the leverage of the financial sector is elevated.

Figure 3 illustrates how the combination of the volatility shock and leverage determine

which region an economy falls into. The x?t = 1 line is downward sloping and divides the two

regions. First, it can be seen that a high level of previous period leverage and an increase in

volatility push the economy into the fragile region, as discussed above. Second, low leverage

is associated with the safe region. This highlights that the pre-crisis period is critical for the

build-up of financial fragility. A period of low volatility reduces the risk-shifting incentives.

The financial intermediaries increase their leverage and extend their credit supply. This credit

boom brings with it financial fragility due to low loss absorbing capacities. In such a scenario

with high leverage, a contraction shock can then cause a roll-over crisis. To put it another

way, tranquil periods sow the seed of a crisis.

In some states of the world, there are now multiple equilibria, in which the normal and run

equilibrium are both possible. A sunspot shock then selects between the equilibria, following

Cole and Kehoe (2000).13 The sunspot ιt takes the value 1 with probability Υ and 0 with

13An alternative to the sunspot shock would be to use a global games approach to determine the equilibrium.
Ikeda and Matsumoto (2021) use global games in a framework with runs. De Groot (2021) also includes global
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probability 1−Υ . If ιt = 1 materializes and x?t < 1, a run takes place. The condition on the

recovery ratio x?t ensures that the run equilibrium is only chosen if it is optimal. If x?t > 1,

then the sunspot shock has no impact on the equilibrium choice.

Taken together, the probability for a run in period t + 1 depends on the probability of

being in the crisis region in the next period and of drawing a sunspot shock:

pt = prob(x?t+1 < 1)Υ. (33)

The run probability is time-varying and endogenous, as x?t+1 depends on the macroeconomic

and financial circumstances.

While all the structural elements of the two equilibria are the same, I assume that there is

the possibility for an additional increase in volatility if a run occurs. The general properties

of the model are unchanged by the assumption. However, it allows for a better fit with the

data. Adding this features allows the model to account for the magnitude of the increase in

a variety of volatility measures as observed during the financial crises. The volatility process

is now:

σt = (1− ρσ)σ + ρσσt−1 + 1x?t<1∧ιt=1σ
σεσ? + σσεσt , (34)

where 1 is an indicator function, and εσ? is the size of the increase in case of a run.

2.4 Production, Monetary Policy and Closing the Model

The non-financial firms sector consists of intermediate goods producers, final goods producers

and capital goods producers. The central bank follows a Taylor rule with a zero lower bound.

Intermediate Goods Producers There is a continuum of competitive intermediate goods

producers. The representative intermediate goods producer produces the output Yt with labor

Lt and working capital Kt as input:

Y j
t = At(K

j
t−1)α(Ljt )

1−α. (35)

At is total factor productivity, which follows an AR(1) process. The firm pays the wage Wt

to the households. The firm purchases in period t− 1 capital St−1 at the market price Qt−1.

The firm finances the capital with securities SBt−1 from the financial sector and the households

SHt−1, so that:

Kt−1 = SHt−1 + SBt−1. (36)

This loan is frictionless and the intermediate firm pays the state-contingent interest rate RK,t.

After using the capital in period t for production, the firm sells the undepreciated capital

(1− δ)Kt at market price Qt. The intermediate output is sold at price Mt, which turns out

games in a model with a financial accelerator and partial runs on the financial sector.
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to be equal to the marginal costs ϕmc. The problem can be summarized as:

max
Kt−1,Lt

∞∑
i=0

βiΛt,t+i
(
Mt+iYt+i +Qt+i(1− δ)Kt−1+i −Rkt+iQt−1+iKt−1+i −Wt+iLt+i

)
.

Final goods retailers The final goods retailers buy the intermediate goods and transform

them into the final good using a CES production technology:

Yt =

[∫ 1

0
(Y j
t )

ε−1
ε df

] ε
ε−1

. (37)

The price index and intermediate goods demand are given by:

Pt =

[∫ 1

0
(P jt )1−εdf

] 1
1−ε

, and Y j
t =

(
P jt /Pt

)−ε
Yt. (38)

The final retailers are subject to Rotemberg price adjustment costs. Their maximization

problem is:

Et

{ T∑
i=0

Λt,t+i

[(P jt+i
Pt+i

− ϕmct+i
)
Y j
t+i −

ρr

2
Yt+i

( P jt+i

ΠP jt+i−1

− 1
)2
]}
, (39)

where Π is the inflation target of the monetary authority.

Capital goods producers Competitive capital goods producers produce new end of period

capital using final goods. They create Γ(It/St−1)St−1 new capital St−1 out of an investment

It, which they sell at market price Qt:

max
It

QtΓ (It/St−1)St−1 − It, (40)

where the functional form is Γ(It/St−1) = a1(It/St−1)1−η + a2 as in Bernanke, Gertler and

Gilchrist (1999). The FOC gives a relation for the price Qt depending on investment and

the capital stock, which is Qt = 1/ [Γ′ (It/St−1)]. The law of motion for capital is St =

(1− δ)St−1 + Γ (It/St−1)St−1.

Monetary Policy, Effective Lower Bound and Resource Constraint The monetary

authority follows a standard Taylor Rule for setting the nominal interest rate RIt that is

constrained by the zero lower bound:

RIt = max

[
RI
(

Πt

Π

)κΠ
(
ϕmct
ϕmc

)κy
, 1

]
, (41)

where deviations of marginal costs from its deterministic steady state ϕmc capture the output

gap.14 To connect this rate to the household, there exists one-period bond in zero net supply

14While the focus is on the zero lower bound, the model could also be extended to evaluate negative interest
rate policies, e.g. along the lines of Darracq Pariès, Kok and Rottner (2020).

17



that pays the riskless nominal rate RIt . The associated Euler equation reads as follows:

βΛt,t+1R
I
t /Πt+1 = 1. (42)

The aggregate resource constraint is

Yt = Ct + It +G+
ρr

2

(
Πt

Π
− 1

)2

Yt, (43)

where G is government spending and the last term captures the adjustment costs of Rotem-

berg pricing. This constitutes a recursive competitive equilibrium, where the details of the

equilibrium description can be found in Appendix B.

2.5 Global Solution Method, Occasional Runs and the Zero Lower Bound

The model is solved with global methods to account fully for the highly nonlinear features

of the model such as the multiplicity of equilibria and the zero lower bound. I use a time

iteration algorithm with piecewise linear policy functions based on Richter, Throckmorton

and Walker (2014). The global solution method is adopted to factor in the multiplicity of

equilibria. The details of the numerical solution are left to Appendix D.

3 Model Evaluation

This section focuses on the quantitative properties of the nonlinear model that is solved with

global methods. I start by explaining how the model is mapped to the data, before moving

on to analyse the mechanism behind the emergence and unfolding of a crisis. I also outline

the role of low interest rates and the zero lower bound. The estimation of financial fragility

and macroeconomic downside risk is covered in the next section.

3.1 Model Parameterization and Selected Key Moments

The emphasis of the calibration is on the recent financial crisis in the United States and the

shadow banking sector. The financial sector variables and shock processes are set to match

selected moments, while the conventional parameters are chosen based on the literature. The

focus is mostly on quarterly data from 1985:Q1 to 2014:Q4 to accommodate the changing

regulation of shadow banking activities. The starting point coincides with major changes in

the contracting conventions of the repurchasement agreement (repo) market - an important

source of funding for shadow banks - that took place after the failure of a number of dealers

in the early 1980s (Garbade, 2006).15 This also captures the period after the Great Inflation.

After the financial crisis, new regulatory reforms such as Basel III and the Dodd-Frank Wall

Street Reform and Consumer Protection Act act overhauled the financial system, suggesting

15There were three major changes in contracting conventions as documented in Garbade (2006). First, the
Bankruptcy Amendments and Federal Judgeship Act of 1984 altered the treatment of repos under bankruptcy
law. Second, lenders became able to earn interest in a repurchasement agreement. Third, a new repo contract
called a tri-party-repo emerged.
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Table 1: Calibration

a) Conventional Parameters Value Target / Source

Discount factor β 0.997 Risk free rate = 1.2% p.a.
Frisch labor elasticity 1/ϕ 0.75 Chetty et al. (2011)
Risk aversion σH 1 Log utility for consumption
TFP level A 0.407 Output = 1
Government spending G 0.2 Govt. spending to output = 0.2
Capital share α 0.33 Capital income share = 33 %
Capital depreciation δ 0.025 Depreciation rate = 10% p.a.
Price elasticity of demand ε 10 Markup = 11%
Rotemberg adjustment costs ρr 178 Calvo duration of 5 quarters
Elasticity of asset price ηi 0.25 Bernanke, Gertler and Gilchrist (1999)
Investment Parameter 1 a1 0.530 Asset Price Q = 1
Investment Parameter 2 a2 -.008 Γ(I/K) = I
Target inflation Π 1.005 Inflation Target of 2%
MP response to inflation κπ 2.0 Standard
MP response to output κy 0.125 Standard

(b) Financial Sector & Shocks Value Moment Data Model

Parameter asset share HH γF 0.33 Share shadow banking sector 33% 34%
Mean Substandard Security ψ 0.01 Mean shadow bank leverage 15.5 15.6
Intermediation cost HH Θ 0.04 Financial crisis probability 2.2% 2.2%
Survival rate ζ 0.88 Mean credit spread 2.3% 2.9%
Persistence volatility ρσ 0.96 Persistence of leverage 0.96 0.94
Std. dev. volatility shock σσ 0.0031 Std. dev. of leverage 3.0 3.0
Persistence TFP ρA 0.95 Persistence TFP 0.95 0.95
Std. dev. TFP shock σA 0.0026 Std. dev. of output growth 0.6 0.6
Volatility increase run εσ? 5.50 Drop in leverage during run 24% 23%
Sunspot Shock Υ 0.50 Output drop during run 2.8% 2.5%

to end the sample a few years on from 2008. Table 1 summarizes the calibration and the

match with targeted moments in the data.

Conventional Parameters The discount factor is set to 0.997, which corresponds to an

annualized long-run real interest rate of 1.2%. This low interest rate environment makes

it possible to evaluate the connection between the zero lower bound and financial crises.

The Frisch elasticity is set to match an elasticity of 0.75, as suggested in Chetty et al.

(2011). Risk aversion is parameterized to 1, which implies a logarithmic utility function.

Total factor productivity A normalizes output to 1 in the deterministic steady state (DSS).

Government spending G is 20% of total GDP in the DSS. The production parameter α

matches a capital income share of 33%. The annual depreciation is chosen to be 10%, which

pins down δ = 0.025. The price elasticity of demand is set to 10. The Rotemberg adjustment

costs correspond to a five-quarter average duration of resetting prices in the related Calvo

framework. The elasticity of the asset price ρr is 0.25 as in Bernanke, Gertler and Gilchrist
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(1999). The parameters of the investment function normalize the asset price to Q = 1 and

the investment Γ(I/K) = I in the DSS. Monetary policy responds to deviations of marginal

costs (κy = 0.125) and inflation (κπ = 2.0), where the target inflation rate is normalized to

2% per annum.

Financial Sector and Shock Processes The parameters related to the financial sector

and the shock processes are set to target selected moments of the shadow banking sector,

the frequency of financial crises and the dynamics of output. The financial sector represents

the shadow banking sector. Specifically, I define these as entities that rely on short-term

deposits that are not protected by the Federal Deposit Insurance Corporations and do not

have access to the FED’s discount window.16 The share of total assets held directly by the

shadow banking sector was 37.1% in 2006 and dropped to 28.3% in 2012, as shown by Gallin

(2015) using the financial accounts of the United States. In line with this, the parameter γF

specifies that the shadow banking sector holds 33% of total assets on average.17 The leverage

measure combines balance sheet data from security broker dealers and finance companies

using the U.S. Flow of Funds data. The leverage series itself is calculated based on book

equity, which is the difference between the (market) value of the portfolio and the liabilities

of financial intermediaries as discussed in detail in Appendix A.18 The return of ψ = 0.01 for

the substandard security is used to target a mean leverage ratio of 15.5 as in the data. The

intermediation cost parameter Θ is set to match an annual run probability of 2.2%, which

corresponds to a financial crisis on average every 45 years. This frequency is in line with the

historical macroeconomic data of Jordà, Schularick and Taylor (2017). The average yearly

probability of a financial crisis is around 2.7% for the United States and 1.9% for a sample

of advanced economies since the Second World War. The survival rate θ is set such that the

finance premium corresponds to an average spread of 2.3% as observed between the BAA

bond yield and a 10 year Treasury bond. The fraction of the start capital ζ is implied from

the other financial parameters.

The volatility shock’s persistence ρσ and standard deviation σσ is set to match the persis-

tence and standard deviation of the described shadow bank leverage measure. The standard

deviation of the TFP shock σA targets the standard deviation of real quarter-to-quarter GDP

growth. The persistence of the shock is aligned with the estimated persistence of the linear

detrended TFP series of Fernald (2014). Finally, the additional exogenous increase in volatil-

ity εσ? is parameterized to have an average drop in leverage of 24% during a run, as observed

16This definition applies to the following entities: Money market mutual funds, government-sponsored
enterprises, agency- and GSE-backed mortgage pools, private-label issuers of asset-backed securities, finance
companies, real estate investment trusts, security brokers and dealers, and funding corporations.

17Based on a broader definition of shadow banking activities, Pozsar et al. (2010) suggest a share of 50%
for the shadow banking sector.

18An alternative important measure is the financial intermediaries’ market capitalization (e.g. market
valuation of financial intermediaries) as emphasized in He, Khang and Krishnamurthy (2010) and He, Kelly
and Manela (2017). However, the appropriate concept in this context is book equity because the occurrence
of a run in the model depends directly on book equity that is denoted as net worth in the model. Market
capitalization would be the appropriate measure related to the issuance of new shares or acquisitions decision
as argued in Adrian, Colla and Shin (2013).
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in the fourth quarter of 2008. This exogenous increase in volatility is also introduced to match

the substantial surge in different volatility measures observed for this period.19 Finally, the

sunspot shock materializes with a probability of 50%, which helps to match the demeaned

output growth of -2.8% in 2008:Q4.

3.2 Financial Crises and their Macroeconomic Impact

The model enables us to study the endogenous vulnerability to a financial crisis because a

run on the financial sector is endogenous and depends on economic fundamentals. For this

reason, I can assess the typical dynamics around a run to evaluate the fluctuations of key

macroeconomic as well as financial variables, the underlying drivers of a financial crisis and

the build-up of financial fragility.

Specifically, I conduct an event analysis around a financial crisis, which is based on a

simulation over 500,000 periods that includes 2, 767 runs. Figure 4 displays the run dynamics

using an event window approach, where the window contains the path for ten quarters before

and after a run. The typical run on the financial sector, as captured by the median path, is

preceded by a build-up of leverage, elevated credit supply, a low finance premium and higher

output levels. The run then causes a sharp economic contraction. Output drops severely -

with a quarter-to-quarter growth rate close to −2.5%, which corresponds to a 10% annualized

rate. Leverage also falls due to a surge in volatility. The observed dynamics reconcile not

only the path of leverage and output, but also the tendency for credit boom to precede a

financial crisis (Schularick and Taylor, 2012) and for credit spreads to spike from initially low

levels during a crisis (Krishnamurthy and Muir, 2017).

The underlying reason for the run is a period of low volatility. The fact that even the 5%

quantile of volatility is considerably below its long-run mean highlights this. In that regard,

the framework features a volatility paradox in the spirit of Brunnermeier and Sannikov (2014).

In contrast to volatility, the total factor productivity (TFP) is less important for the build-

up. While a positive TFP level facilitates the boom, the median is only slightly above the

risky steady state. Therefore, the main mechanism relates to low volatility as the underlying

driver. Low volatility reduces the risk-shifting incentives so that financial intermediaries

increase leverage and extend credit. This results in a credit boom and boosts output. At the

same time, financial fragilities increase due to low equity holdings relative to the asset size.

The realization of a contractionary shock pushes the economy into the fragile region, where a

run is possible. If then a sunspot shock materializes so that depositors do not roll over their

deposits, the financial intermediaries are forced to sell their assets at a firesale price. Due to

the firesale, the financial intermediaries then do not have enough equity to cover their losses

and a self-fulfilling run occurs.

The dynamics point out the importance of leverage because runs occur during periods

19While the model predicts an increase in volatility during a run independent of this component, the
magnitude could not match the increase observed in the fourth quarter of 2008:Q4 throughout different
related concepts such as financial uncertainty (Jurado, Ludvigson and Ng, 2015) or cross-sectional idiosyncratic
uncertainty (Bloom et al., 2018).
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Figure 4: Event window around run episodes. Based on a simulation of 500,000 periods, the median path
and the 68% as well as 90% confidence intervals of all runs are displayed ten quarters before and
after a run in period 0. The scales are either percentage deviations from the simulated mean
(%∆), annualized percent or percent.

of excessive leverage accumulation. The incorporation of the risk-shifting incentives and the

volatility shock result in procyclical leverage, as an increase in leverage raises output and

credit. Due to procyclical leverage dynamics, the framework captures the way that a boom

precedes a run. In the case of countercyclical leverage, high leverage would imply low output

and low assets. A run would then occur in a bust and therefore could not capture this

important empirical fact. Furthermore, the model can capture the drop in leverage during

a run as observed in 2008:Q4. Even though the return on securities is very large, the risk-

shifting incentives combined with the increase in volatility limits the leverage of the newly

entering financial intermediaries. 20 The strong increase in volatility stems from two sources.

First, contractionary shocks are needed to trigger a run, which results in enhanced volatility.

Second, the model features an exogenous increase in volatility if a run occurs. Even though

20In fact, this model allows for new intermediaries operating in the same period. Other models predict
increases in leverage up to 2000% after a run. The high level of leverage among these newly entering interme-
diaries would increase asset prices so much that the run equilibrium would no longer exist.
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the latter element is not necessary to generate the explained boom-bust dynamics, the model

would then predict a small increase in leverage after a run instead of a drop as observed in

the data.

Financial Fragility and Macroeconomic Downside Risk The model shows that there

is a substantial increase in financial fragility prior to the run. The probability of a run for

the next quarter peaks in the period before the run. The median is 5%, corresponding to

20% as an annualized rate, after it increases steadily in the periods before. At the same

time, the upper bound of financial fragility is limited as it peaks around 12%. The reason

is that agents are aware of the possibility of a run which endogenously limits the leverage of

the financial sector. This reduces the threat of a financial crisis arising. In other words, the

model precludes a scenario in which the possibility of a run in the next period is too large as

this would be in conflict with the decision of the agents.21 Another important implication is

that not every boom ends in a bust. Even though elevated leverage increases the likelihood,

the economy can also converge back to normal times. This is the case if either no sufficient

contractionary shocks occur or no sunspot shock materializes. Importantly, this property

is in line with recent empirical evidence that not each boom ends in a bust (Gorton and

Ordonez, 2020).

3.3 Financial Crises in Low Interest Rate Environment

The next step is to shed light on the connection between a low interest rate environment

and financial crises. The central bank faces the zero lower bound, which restricts potential

interest rate cuts during a financial collapse. As a consequence, the zero lower bound is

potentially an important channel that intensifies the probability and severity of a financial

crisis. While the event window analysis (Figure 4) shows that the zero lower bounds can bind

during a financial crisis, the potential impact cannot be directly evaluated from this exercise.

For this reason, Figure 5 compares a financial crisis in an economy with and without a

zero lower bound. Each respective economy is simulated with the same series of (volatility,

productivity and sunspot) shocks, which are chosen to generate boom-bust dynamics with a

binding zero lower bound.22 The analysis highlights the relevance of the zero lower bound

for financial fragility, output and inflation. First of all, the zero lower bound increases the

probability of a run. This is because the central bank is limited in their response, making

a financial crisis is more likely. The drop in output is also more severe, especially in the

periods with a binding zero lower bound. While a financial crisis is already associated with a

strong downside risk in inflation - as also empirically found in López-Salido and Loria (2020)

- the zero lower bound exacerbates the downside risk of inflation even further. Furthermore,

the threat of encountering the zero lower bound creates deflationary pressure in periods of

21An extension of the model could relax the rational expectations assumption, which could allow for a higher
probability of a run.

22The sequence is based on the event window analysis and is the mean shock realization 50 periods before
and 10 periods after a run conditional on a binding zero lower bound in the simulation. The respective starting
point is the stochastic steady state of each economy.
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Figure 5: Comparison of crisis dynamics between an economy with a zero lower bound and an economy
without such a constraint. Both economies are subject to the same shock sequence that generates
boom-bust dynamics. The abbreviation sss denotes the stochastic steady state from the economy
with the ZLB.

high financial fragility. This constitutes a further deflationary channel of the lower bound,

in addition to the one which has already been studied in the literature, as e.g. in Bianchi,

Melosi and Rottner (2021). The described effects intensify even further with an increase in

the anticipated time spent at the zero lower bound. Taken together, the results highlight

an important interaction between monetary policy and financial crises in a low interest rate

environment.23

4 Estimation of Financial Fragility

I estimate the build-up of financial fragility and evaluate the macroeconomic downside risk

around the financial crisis in 2008 through the lens of the quantitative model with endogenous

runs. This approach delivers a new structural estimate for the probability of a financial crisis.

The analysis also provides insights on the structural drivers and can be used for counterfac-

tuals that evaluate alternative monetary and macroprudential strategies. The considered

horizon stretches from 1985:Q1 to 2014:Q4, in line with the calibration.

The estimation strategy employs a nonlinear filter. The filter retrieves the sequence of

the shocks including the sunspot shock using the parameterized model. This sequence can,

in turn, be used to obtain other objects of interest such as the estimated probability of a run.

To capture the nonlinearity of the model, I use a particle filter as suggested in Fernández-

23The average duration at the zero lower bound after a financial crisis is rather small in the model, which is
a setting required for the model to be solved. The reason is that the detrimental general equilibrium effects of
the zero lower bound in combination with a financial crisis are rather strong. This result is in line with work
on the role of the zero lower bound on the existence of an equilibrium (Bianchi, Melosi and Rottner, 2021).
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Villaverde and Rubio-Ramı́rez (2007).24 I adapt the particle filter to specifically take into

account the multiplicity of equilibria similar to Aruoba, Cuba-Borda and Schorfheide (2018).

Additionally, I extend their approach to handle not only multiplicity of equilibria, but also

the endogenously time-varying nature of the equilibria probabilities. This adjustment is

necessary to take account of the endogeneity of runs.

The outlined approach to estimating the endogenous financial fragility based on a struc-

tural model with financial crises is general and provides the structural equivalent to the

fast-growing empirical growth-at-risk approach (Adrian, Boyarchenko and Giannone, 2019).

4.1 Particle Filter

The particle filter estimates the hidden states and shocks based on a set of observables. It is

convenient to cast the model in a nonlinear state-space representation as a starting point:

Xt = f(Xt−1, vt, ιt), (44)

Yt = g(Xt) + ut. (45)

The first set of equations contains the transition equations that depend on the state variables

Xt, the structural shocks vt and the sunspot shock ιt. In particular, the state variables

and shocks determine endogenously the selected equilibrium of the model, either the normal

equilibrium or the run equilibrium. The transition equations are different for the different

regimes. The nonlinear functions f are obtained from the nonlinear model that is fitted to

selected moments and solved with the global solution method. The second set of equations

contains the measurement equations, which connect the state variables with the observables

Yt. It also includes an additive measurement error ut.
25

The particle filter extracts a sequence of conditional distributions for the structural shocks

vt|Y1:t and the sunspot shock ιt|Y1:t, which provides the empirical implications of the model.

Thereby, the filter evaluates when a run occurs and provides the probability of a run in the

next quarter. The algorithm and the adaptation to the multiplicity of regimes is laid out in

Appendix E.

Observables The observables Yt are GDP growth and shadow bank leverage. GDP growth

is included as a model with financial crisis should capture the sizeable reduction in economic

activity. GDP growth is measured as the quarter-to-quarter real GDP growth rate. Output

growth is demeaned as the trend growth is zero in the model. The model is fitted to leverage

to capture the key trade-off between leverage and financial fragility explored above. The

measure relies on shadow bank leverage as discussed in the calibration. It uses balance sheet

data for security broker-dealers and finance companies from the U.S. Flow of Funds, and is

24The particle filter is based on Aruoba, Cuba-Borda and Schorfheide (2018), Atkinson, Richter and Throck-
morton (2019) and Herbst and Schorfheide (2015).

25The particle filter requires a measurement error to avoid a degeneracy of the likelihood function. Another
advantage of including the measurement error is that it can take into account noisy data. Noise might be a
particular concern in the measurement of shadow bank leverage.
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Figure 6: Filtered median of leverage and output growth is the blue line together with its 68% confidence
interval. The observables are shadow bank leverage and (demeaned) real output growth. The red
line corresponds to the fourth quarter of 2008:Q4.

based on book equity as also discussed in Appendix A. The observation equation is:[
Output Growtht

Leveraget

]
=

[
100 ln

(
Yt
Yt−1

)
φt

]
+ ut, (46)

where the measurement error is given by ut ∼ N(0,Σu). The variance of the measurement

error is set to 25% of the sample variance, similar to Gust et al. (2017).

4.2 Results

To establish that the filtered model captures the fluctuations in the observables, Figure 6

compares the estimated sequence for leverage and output against the data. In line with the

data, leverage increases substantially prior to the financial crisis. The peak comes in 2008:Q1,

with leverage close to 24. The filtered path also takes account of the strong decrease in output

and leverage in the fourth quarter of 2008.

Crucially, the model can account for this sharp drop in the fourth quarter of 2008 via
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Figure 7: Comparison of baseline estimate to a counterfactual scenario without a run. The baseline median
(blue line with its 68% confidence interval) is compared to the counterfactual median, where no
sunspot shock materializes in 2008:Q4.

two different channels: a run on the financial sector or large contractionary shocks. As the

equilibria are not exogenously imposed, the particle filter selects the regime depending on

the fit with the data. This gives an assessment if a run took place. The model clearly favors

a run. The filter assigns a weight of (close to) 100% to a run to explain the 2008:Q4 period,

while the weight of the run regime is basically 0% in all other periods.

Bernanke (2018) and Gorton and Metrick (2012) argue that the run on the financial sector

is responsible for the sharp and large decrease in economic activity. To assess this through the

lens of the model, a counterfactual compares the estimated path to a hypothetical scenario

without a self-fulfilling run as no sunspot shock materializes in 2008:Q4. The crucial take-

away is that the economic contraction is considerably smaller in the absence of a run, as

shown in Figure 7. The endogenous amplification via a run enables to account for the drop

in output. To be precise, the endogenous mechanism of a run results in an additional 1.8

percentage points growth reduction quarter to quarter. The run alone explains around 70% of

the output drop. The impact of the contractionary shocks without a run would only explain

30% of the contraction in 2008:Q4. This result - on the importance of the endogenous run

mechanism to account for the time series evidence from the U.S - also implies that studying

the role of financial shocks using linearized models without runs is difficult.

To inspect the economic drivers behind the run in 2008:Q4, the filtered series of volatility

and total factor productivity can be compared as shown in Figure F.1 in the Appendix. A

series of shocks reduces volatility σt prior to the financial crisis. In line with the idea of the

volatility paradox, this period sows the seed of a crisis as leverage and financial fragility in-

crease. In 2008:Q4, contractionary volatility and TFP shocks in combination with a sunspot

shock then trigger the run. Figure F.1 also provides a validity check of the empirical exper-

iment, as other filtered series of key variables such as securities, inflation, finance premium

can be assessed. The estimated series predicts a credit boom gone bust, a countercyclical

finance premium and a period of low inflation after the run in line with the data.
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Figure 8: Filtered median probability of a run in the next quarter with its 68% confidence interval. To
disentangle the impact of the structural shocks, the realizations of the volatility shock and TFP
shock are set to 0 one at a time. The dashed green line is a scenario that only uses the extracted
volatility shocks. The black dash-dotted line is a scenario that only uses the extracted TFP shocks.
The red line indicates the fourth quarter of 2008.

Financial Fragility A crucial advantage of the developed approach is that it provides a

model-implied (real-time) estimate of financial fragility. In particular, Figure 8 shows the

probability of a run for the period ahead. This probability fluctuates over time as it depends

on the business cycle and on the vulnerability of the financial sector. While there is a slight

increase around 1998, there is a remarkable surge of financial fragility from 2005 onwards.

Thus, the model suggests that that there had already been a substantial build-up of financial

fragilities a few years prior to the outbreak of the financial crisis. From a quantitative

perspective, the median one-quarter-ahead forecast for a financial crisis in 2008:Q4 is around

5%, which would be 20% in annualized terms.

As a next step, I disentangle the structural sources of the financial crisis using a counter-

factual analysis. In particular, the estimated series of the productivity and volatility shock

are evaluated in isolation by setting the other shock to zero for the entire horizon. Thus, the

financial fragility measure is then revisited if only volatility shocks or TFP shocks drive the

economy. Furthermore, the counterfactual setup sheds lights on the question of whether a

shock alone would have still resulted in a run. Total factor productivity in isolation causes

(virtually) no financial fragility in the run-up to the financial crisis, and no run would have

taken place. By contrast, the volatility shock is the main driver, explaining, by itself, up to

90% of total fragility in 2008. The analysis emphasizes the importance of nonlinearities as the

combination of the shocks can increase (or decrease) financial fragility. This can be seen in

the years preceding 2008: the measured financial fragility is considerably higher in a scenario

with both shocks than the sum of them in isolation. Furthermore, the volatility shock alone is
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Figure 9: The contour plots displays the joint distribution of GDP growth and leverage for 2008:Q4 conditional
on 2008:Q3. It shows that the multimodality arises due to the run equilibrium. Yellow indicates
a high density, while dark blue indicates a low density. The red square shows the actual data
realization in 2008:Q4. The forecasts are conditioned on the median realization in 2008:Q3.

also not sufficient to trigger a run. The reason is that the combination of contractionary TFP

and volatility shocks trigger the run in the estimated series. Taken together, the volatility

shock is more important than the TFP shock to explain the financial crisis from a horse race

perspective. But, there are very important interactions between the shocks.

Macroeconomic Tail Risk and Multimodality The increase in financial fragility in-

duces substantial macroeconomic downside risk as the possibility of a financial crisis emerges.

To better understand the downside risk, I evaluate the joint one-quarter-ahead distribution

of output and leverage. Figure 9 shows a contour plot of the one-quarter-ahead joint distri-

bution of output and leverage for 2008:Q4 conditional on 2008:Q3. This points out that the

distribution of output and leverage is bimodal due to the possibility of a run. There is a high

probability that the normal equilibrium with an output growth centered around 0 is chosen.

However, there is the significant tail risk of a run on the financial sector that brings with it

a large drop in GDP and leverage. This figure also emphasizes how the model can explain

the data. The probability of observing such large shocks for TFP and volatility, which could

account for the observed drop in output without a run, is infinitesimally small. Instead, an

endogenous financial crisis can capture the data and this sharp recession. The incorporation
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of nonlinear features permits it to explain the data.

From a time perspective, the possibility of a financial crisis opens up in 2005 as the

period of low volatility induces high leverage and financial fragility. Before 2005 and from

2009 onwards, the distribution is overwhelmingly unimodal as a run is (almost) not possible.

Figure F.2 in the Appendix displays how the conditional joint distribution evolves over time.

The analysis is the structural equivalent to the large body of literature on growth-at-risk

starting with Adrian, Boyarchenko and Giannone (2019), where the downside risk over time

is evaluated. Recent reduced-form empirical approaches also suggest that the downside risk

comes from a bimodal distribution, in line with my findings (see e.g Adrian, Boyarchenko

and Giannone, 2021, Caldara et al., 2020 and Mitchell, Poon and Zhu, 2021). The work most

closely related is that of Adrian, Boyarchenko and Giannone (2021), who estimate the condi-

tional joint distributions of economic fundamentals and financial conditions. Similarly to the

predictions in the model, they find the occurrence of a second equilibrium for 2008:Q4 con-

ditional on 2008:Q3. They also find that the probability of the normal equilibrium is higher.

Comparing it with the reduced form approach, the structural approach makes an assessment

of the impact of policy counterfactuals on the emergence of macroeconomic downside risk

possible. This will be the focus of the next section.

5 Counterfactuals for Monetary and Macroprudential Policies

This section conducts policy counterfactuals using the quantitative nonlinear model with

financial crisis and the estimated endogenous financial fragility measure. In particular, I

evaluate the impact of alternative monetary and macroprudential strategies on the build-up

of financial fragility, economic downside risk and their potential to avoid a financial crisis in

2008. Using the filtered shocks from the particle filter, I can directly evaluate how alternative

policies would have affected the estimated probability of a run and the occurrence of a run on

the financial sector in 2008:Q4. While the focus is on specific monetary and macroprudential

instruments in this section, the outlined approach is general and can be applied to address

other policies.

5.1 Monetary Policy: “Leaning Against the Wind”

With regard to monetary policy, I evaluate the potential of “leaning against the wind” policies

to lower financial fragility. “Leaning against the wind” prescribes a tighter monetary policy

(e.g. higher interest rates) during a potential credit boom for financial stability purposes. The

advantage of monetary policy over macroprudential policy and supervision is that it gets in

all of the cracks that macroprudential policy and supervision fail to reach. This is especially

relevant in my setup because the analysis focuses on the financial fragility associated with

the unregulated part of the financial sector. While there has been active debate about its

costs and benefits, this setup can provide novel insights as it uses an estimated endogenous

financial stability measure based on a nonlinear structural model.
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Figure 10: Counterfactual policy analysis of “leaning against the wind” and the leverage tax. The filtered
median probability of a run in the next quarter and output growth (solid blue) with its 68%
confidence interval is shown for the baseline scenario. Using the estimated shocks, the median for
the counterfactual scenario of “leaning against the wind” (dashed green) and leverage tax (dash-
dotted black) is shown. The red line indicates the fourth quarter of 2008.

To incorporate “leaning against the wind”, the central bank raises its interest rate if

the security holdings of financial intermediaries exceed a certain target value. This adds an

asymmetric component to the Taylor rule that incorporates financial considerations in the

monetary policy response during a boom:

RIt = max

{
RI
(

Πt

Π

)κΠ
(
ϕmct
ϕmc

)κy [
1SBt >ST

(
SBt
ST

)κs
+ (1− 1SBt >ST )

]
, 1

}
, (47)

where 1 is an indicator function and κs is the response to deviations above a target value

ST set by the central bank. The asymmetric design implies that the sole policy gain and

additional space to cut rates comes from raising rates during a credit boom, in line with the

idea of “leaning against the wind”.

The impact on financial stability is ambiguous as an increase in the interest rate can lead

to a substitution towards more equity and less deposit-based financing. At the same time,

the increased funding cost due to higher interest rates can also result in less loss absorbing

capacities and thus, an increased risk of financial stability. A quantitative analysis shows

that the impact of “leaning against the wind” depends on the shocks. “Leaning against the

wind” helps to increase financial stability in a world with only volatility shocks. However,

the probability of financial crises increases in the full model that also includes TFP shocks.

This limits the potential scope of the response κS , which is set to 0.04. At this value, the

probability of a financial crisis increases slightly to 2.3% from 2.2%, but it limits the build-up

of very high leverage levels and its associated financial fragility.

The counterfactual scenario with a monetary authority that “leans against the wind”

for the financial crisis of 2008 can now be evaluated. Based on the estimated sequence

of distribution of shocks in the previous section, an alternative scenario with the adjusted
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monetary policy rule can be studied. The filtered shocks are fed into the adapted model, which

allows me to calculate the counterfactual evolution of the economy. Figure 10 summarizes

the the counterfactual path. The build-up of financial fragility is now slightly reduced. The

probability of a run peaks now at around 6% instead of 8%. This shows that “leaning against

the wind” offers some potential in terms of protecting the economy from financial crisis.

However, the policy is not enough in this scenario. Although the economy is slightly less

fragile, the estimated shocks still trigger a financial crisis and output drops (almost) as much

as in the baseline scenario.26

5.2 Macroprudential Policy: Leverage Tax

I also evaluate the evolution of financial fragility under an alternative macroprudential policy,

namely a leverage tax for shadow banks. This is a tax on the deposit holdings and has been

the subject of recent discussions among policymaking circles. Specifically, the “Minneapolis

Plan to End Too Big to Fail” drawn up by the Minneapolis Federal Reserve Bank in 2017

proposes taxing the borrowing of shadow banks.27 Given that shadow banks are financial

intermediaries which, by their very definition, operate outside of the regulatory banking

umbrella, regulating them is potentially extremely difficult. In addition, finding a reliable

measure of shadow banks’ leverage is quite a challenging task, which poses another problem.

A tax on the borrowing of shadow banks is a rather simple and tractable approach, making

it well suited.

The leverage tax τφ requires the banker to pay at the end of the period a tax τ for its

borrowings from households:

Nt = RKt Qt−1S
B
t−1 −RDt−1Dt−1 − τφDt−1 + τL, (48)

They also receive lump sum transfer τL, where the lump sum transfer is chosen so that

the leverage tax is budget neutral for each intermediary. The leverage tax incentivizes the

intermediaries to substitute from deposit holdings towards equity. The reduction in leverage

can then increase financial stability and lower the frequency of financial crises. The tax τφ

could be interpreted in a Pigouvian sense as the model features a run externality.28 Agents

do not take into account the impact of their own decisions on the run probability so that

the risk-taking and leverage of the financial intermediaries can be too high. The leverage

tax aims to correct undesirable leverage accumulation and thereby to avoid the build-up of

financial fragility. I set the leverage tax τφ to 0.015 to target a reduction in the run frequency

26While an even more aggressive “leaning against the wind” policy could have mitigated the build-up
potentially even more, such a policy is not applicable in this model. This is because a stronger asymmetric
response in the Taylor rule (e.g. increase κS) results in a situation, whereby the equilibrium cannot be found
with global methods anymore. This is a general issue with models featuring strong nonlinearities.

27The plan consists of several recommendations for the entire banking sector. This paper focuses solely on
the leverage tax. In line with the proposal, the leverage tax only applies to shadow banks in the model. An
alternative policy could be to alter the corporate tax rate, which also affects the cost of external financing.

28The proposed tax is constant and does not vary with the business or financial cycle. Thus, the proposed
tax cannot be optimal because - similarly to the probability of a run - the run externality is state-dependent.
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by more than 75%. While the threat of financial crisis is muted, the leverage tax reduces

financial intermediation. This lowers output and credit during non-crisis times.

The counterfactual path of the economy with a leverage tax is summarized in Figure

10. It shows how the macroprudential instrument alters the estimated build-up of financial

fragility and the occurrence of a run on the financial sector in 2008. I find that the leverage

tax significantly reduces the probability of a financial crisis. The peak is now around 1% and

it is close to 0% in 2008:Q3. Furthermore, the leverage tax succeeds in averting a financial

meltdown. The economy does not encounter a run on the financial system in 2008:Q4 due

to the lowered leverage levels of the intermediaries. As a consequence, the fall in output is

much more muted in 2008 in this counterfactual scenario. Taken together, a sufficient limit

on leverage would have reduced the build-up of financial fragility prior to the financial crisis

significantly and would have avoided the run on the financial sector in 2008:Q4 itself.

6 Conclusion

I investigate the endogenous build-up of financial fragility around financial crises with a new

nonlinear macroeconomic model that accounts for key macroeconomic and financial features.

The framework highlights the build-up of leverage as a decisive determinant for a run on the

financial sector. It also emphasizes the importance of a low real interest rate environment

and the zero lower bound when it comes to financial stability.

The quantitative model is taken to the data to estimate the build-up of financial fragility

and the macroeconomic downside risk in the years preceding the financial crisis of 2007-2008.

My results suggest that the estimated financial fragility and the economic downside risk

increase considerably from 2005 onwards and peak in 2008. The developed approach offers

a new strategy for the appraisal of alternative policies, letting me evaluate counterfactual

monetary and macroprudential policies with respect to the estimated endogenous build-up of

the probability of a financial crisis. The counterfactual analysis suggests that macroprudential

policy limiting the leverage of shadow banks would have reduced the build-up of financial

fragility and would have avoided the run on the financial sector in 2008 itself.

The outlined concept for estimating and analyzing the endogenous build-up of financial

fragility and conducting policy counterfactuals through the lens of a structural nonlinear

model is general and can be adapted to a variety of countries, scenarios and policies. The

approach can provide a real-time structural estimate of financial fragility and can help to

quantify the potential financial stability impact of different policy scenarios such as an increase

in the interest rate after a prolonged period of low rates or the tapering of asset purchase

programs.
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A Data: Shadow Bank Leverage

The leverage series in this paper uses book equity, which is the difference between the value

of the portfolio and liabilities of financial intermediaries. An alternative measure is the finan-

cial intermediaries’ market capitalization (e.g. market valuation of financial intermediaries).

Book equity is the appropriate concept in this context because the interest lies with credit

supply and financial intermediaries’ lending decisions, as stressed for instance in Adrian and

Shin (2014).29 In contrast to this, market capitalization is the appropriate measure when con-

sidering the issuance of new shares or acquisition decisions (Adrian, Colla and Shin, 2013).

In the context of the model, the occurrence of a run also depends on book equity, which ratio-

nalizes this choice. With that in mind, book leverage based on book equity is the appropriate

concept for my purposes.

A related issue is that marked-to-market value of book equity, which is the difference

between the market value of portfolio claims and liabilities of financial intermediaries, is con-

ceptually very different from market capitalization. As argued in Adrian and Shin (2014), the

book value of equity should be measured as marked-to-market. In such a case, the valuation

of the assets is based on market values. Importantly, the valuation of assets is marked-to-

market in the balance sheet of financial intermediaries that hold primarily securities (Adrian

and Shin, 2014). Crucially, the concept of marked-to-market value of book equity corresponds

to the approach to leverage adopted in the model as the value of the securities depends on

their market price. Therefore, I am interested in marked-to-market book leverage.

U.S. Flow of Funds The leverage measure for shadow banks uses U.S. Flow of Funds

balance sheet data for security brokers and dealers and finance companies similar to Nuño

and Thomas (2017).30

Equity is computed as the difference between book assets and book liabilities for both

types of financial intermediaries:

Equity Brokers & Dealerst = Assets Brokers & Dealerst − Liabilities Brokers & Dealerst

(A.1)

Equity Finance Companiest = Assets Finance Companiest − Liabilities Finance Companiest

(A.2)

The aggregate leverage measure is then defined as:

Leveraget =
Assets Finance Companiest + Assets Brokers & Dealerst

Equity Finance Companiest + Equity Security Brokers & Dealerst
. (A.3)

Compustat An alternative measure of book leverage of the shadow banking sector can be

constructed with individual balance sheet data from Compustat. I include financial firms that

29He, Khang and Krishnamurthy (2010) and He, Kelly and Manela (2017) provide an opposing view with
an emphasis on market leverage.

30The time series are adjusted for discontinuities and breaks in the data.
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are classified with SIC codes between 6141 - 6172 and 6199 - 6221. This set contains credit

institutions, business credit institutions, finance lessors, finance services, mortgage bankers

and brokers, security brokers, dealers and flotation companies, and commodity contracts

brokers and dealers.31

Equity is computed as the difference between book assets and book liabilities for each

firm:

Equityi,t = Book Assetsi,t − Book Liabilitiesi,t. (A.4)

The leverage of the shadow banking sector is then defined as

Leveraget =

∑
i Book Assetsi,t∑
i Book Equityi,t

, (A.5)

where I sum up equity and assets over the different entities.

31Finance lessors and finance services with the SIC codes 6172 and 6199 are not official SIC codes, but are
used by the U.S. Securities and Exchange Commission.
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B Model Equations and Equilibrium

The system of equations that characterizes the economy is described below.

Households

Ct = WtLt +Dt−1Rt −Dt + Ξt +QtS
H
t + (Zt + (1− δ)Qt)SHt−1, (B.1)

%t = (Ct)
−σ, (B.2)

%tWt = χLϕt , (B.3)

1 = βEtΛt,t+1Rt+1, (B.4)

1 = βEtΛt,t+1
Zt+1 + (1− δ)Qt+1

Qt + Θ(SHt /St − γF )/%t
, (B.5)

βEtΛt,t+1 = βEt%t+1/%t. (B.6)

Financial Intermediaries

QtS
B
t = φtNt, (B.7)

ωt =
φt−1 − 1

RKt φt−1
, (B.8)

(1− pt)ENt [βΛt,t+1R̄tDt] + ptE
R
t [βΛt,t+1R

K
t+1QtS

B
t ] ≥ Dt, (B.9)

(1− pt)ENt [Λt,t+1R
K
t+1(θλt+1 + (1− θ))[1− e

−ψ
2 − π̃t+1]] = ptE

R
t [Λt,t+1R

K
t+1(e−

ψ
2 − ωt+1 + π̃t+1)],

(B.10)

λt =
(1− pt)ENt Λt,t+1R

K
t+1[θλt+1 + (1− θ)](1− ωt+1)

1− (1− pt)ENt [Λt,t+1RKt+1ωt+1]− ptERt [Λt,t+1RKt+1]
, (B.11)

κt =
β(1− pt)ENt Λt,t+1 [λt − (θλt+1 + 1− θ)]

(1− pt)ENt Λt,t+1

[
(θλt+1 + 1− θ) F̃t+1(ωt+1)

]
+ ptERt Λt,t+1

[
(θλt+1 + 1− θ)

(
1− F̃t+1(ωt+1)

)] ,
(B.12)

Et[π̃t+1] = Et

[
ωt+1Φ

(
log(ωt+1) + 1

2(ψ + σ2
t+1)

σt+1

)
− e−ψ/2Φ

(
log(ωt+1) + 1

2(ψ − σ2
t+1)

σt+1

)]
,

(B.13)

Nt = θNS,t +NN,t, (B.14)

NN,t = (1− θ)ζSt−1, (B.15)

NS,t =

RKt Qt−1S
B
t−1 −Rt−1Dt−1 if x?t ≥= 1 ∨ ιt = 0 (no run)

0 if x?t < 1 ∧ ιt = 1 (run occurs)
, (B.16)

Rt =

R̄t−1 if x?t ≥= 1 ∨ ιt = 0 (no run)

x?t R̄t−1 if x?t < 1 ∧ ιt = 1 (run occurs)
. (B.17)
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Non-Financial Firms

Yt = At(Kt−1)α(Lt)
1−α, (B.18)

Kt = St, (B.19)

ϕmct (1− α)
Yt
Lt

= Wt, (B.20)

RKt =
Zt +Qt(1− δ)

Qt−1
, (B.21)

Zt = ϕmct α
Yt
Kt−1

, (B.22)(
Πt

Π
− 1

)
Πt

Π
=

ε

ρr

(
ϕmct −

ε− 1

ε

)
+ Λt,t+1,

(
Πt+1

Π
− 1

)
Πt+1

Π

Yt+1

Yt
, (B.23)

Γ
( It
Kt

)
= a1

( It
Kt

)(1−η)
+ a2, (B.24)

Qt =

[
Γ′
(

It
St−1

)]−1

, (B.25)

St = (1− δ)St−1 + Γ
( It
St−1

)
St−1. (B.26)

Monetary Policy and Market Clearing

RIt = max

[
1, RI

(
Πt

Π

)κΠ
(
ϕmct
ϕmc

)κy]
, (B.27)

βEtΛt,t+1
RIt

Πt+1
= 1, (B.28)

Yt = Ct + It +G+
ρr

2

(
Πt

Π
− 1

)2

Yt, (B.29)

St = SHt + SBt . (B.30)

Shocks

σt = (1− ρσ)σ + ρσσt−1 + 1x?t<1∧ιt=1σ
σεσ? + σσεσt , (B.31)

At = (1− ρA)A+ ρAAt−1 + σAεAt , (B.32)

ιt =

1 with probability Υ

0 with probability 1−Υ
. (B.33)

Definition

The recursive competitive equilibrium is a price system, policy functions for the households,

the financial intermediaries, the final goods producers, intermediate goods producers and

capital goods producers, law of motion of the aggregate state and perceived law of motion of

the aggregate state, such that the policy functions solve the agents’ respective maximization

problem, the price system clears the markets and the perceived law of motion coincides with
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the law of motion. The aggregate state of the economy is described by the vector of state

variables St = (Nt, S
B
t−1, At, σt, ιt), where ιt is a sunspot shock.

42



C Derivation of Financial Intermediary’s Problem

In the following, I derive the financial intermediary’s problem for two cases: (i) absence of

runs and (ii) anticipation of runs.

C.1 Absence of runs

The financial intermediary maximizes the value of its franchise Vt subject to a participation

and incentive constraint, which reads as follows:32

V j
t (N j

t ) = max
SBjt ,D̄t

βEtΛt,t+1

[
θV j

t+1(N j
t+1) + (1− θ)(RKt+1QtS

Bj
t − D̄

j
t )

]
, (C.1)

subject to βEt[Λt,t+1R̄
D
t D

j
t ] ≥ D

j
t , (C.2)

βEtΛt,t+1

{
θV j

t+1(SBjt , D
j
t ) + (1− θ)[RKt+1QtS

Bj
t −D

j
t ]
}
≥ (C.3)

βEtΛt,t+1

∫ ∞
ωjt+1

{
θVt+1(ω, SBjt , D

j
t ) + (1− θ)[RKt+1QtS

Bj
t ωjt+1 −D

j
t ]
}
dF̃t+1(ω).

The financial intermediary’s problem can be written as the following Bellman equation:

Vt(N
j
t ) = max

{SBjt ,b
j
t}
βEtΛt,t+1

[
θVt+1

((
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

]
+ λjt

[
βEtΛt,t+1QtS

Bj
t b

j
t − (QtS

Bj
t −N

j
t )

]
+ κjtβEtΛt,t+1

{[
θVt+1

((
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

]
−
∫ ∞

b
j
t

RKt+1

[
θVt+1

((
ω − b

j
t

RKt+1

)
RKt+1QtS

Bj
t

)
+ (1− θ)

(
ω − b

j
t

RKt+1

)
RKt+1QtS

Bj
t

]
dF̃t+1(ω)

}

where I defined b
j
t = D

j
t/
(
QtS

B
t

)
and used that

N j
t =


(

1− b
j
t−1

RKt

)
RKt Qt−1S

Bj
t−1 if standard security(

ω − b
j
t−1

RKt

)
RKt Qt−1S

Bj
t−1 if substandard security

(C.4)

λjt and κjt are the Lagrange multipliers of the participation and incentive constraint. The

first order conditions are

0 =βEtΛt,t+1R
K
t+1[θV ′,jt+1 + (1− θ)](1− ωjt+1) + λjtEt[βΛt,t+1R

K
t+1ω

j
t+1 − 1]

+ κjtβEtΛt,t+1R
K
t+1

{
[θV ′,jt+1 + (1− θ)](1− ωjt+1)−

∫ ∞
ωjt+1

[
[θV ′,jt+1 + (1− θ)](ω − ωjt+1)

]
dF̃t+1(ω)

}
32The derivation is based on Nuño and Thomas (2017).
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and

0 =− βEtΛt,t+1[θV ′jt+1 + (1− θ)] + λjtβEtΛt,t+1

− κjtβEtΛt,t+1

{
[θV ′jt+1 + (1− θ)]−

∫ ∞
ωjt+1

[
θV ′jt+1 + (1− θ)

]
dF̃t+1(ω)− θ Vt+1(0)

RKt+1QtS
Bj
t

f̃t(ω
j
t+1)

}

where I used ωjt+1 = b
j
t/R

K
t+1. The envelope condition is given as:

V ′jt = λjt (C.5)

The first order conditions can be written as:

0 =βEtΛt,t+1R
K
t+1[θλjt+1 + (1− θ)](1− ωjt+1) + λjtEt[Λt,t+1R

K
t+1ω

j
t+1 − 1]

+ κjtEtR
K
t+1[θλjt+1 + (1− θ)]

{
(1− ωjt+1)−

∫ ∞
ωjt+1

[
(ω − ωjt+1)

]
dF̃t+1(ω)

}
0 =− βEtΛt,t+1[θλjt+1 + (1− θ)] + λjtβEtΛt,t+1

− κjtβEtΛt,t+1

{
[θλjt+1 + (1− θ)]−

∫ ∞
ωjt+1

[
θλjt+1 + (1− θ)

]
dF̃t+1(ω)− θ Vt+1(0)

R
t+1KQtS

Bj
t

f̃t(ω
j
t+1)

}
To continue solving the problem, I use a guess and verify approach. I guess that the value

function is linear in net worth, so that the value function reads as follows:

Vt = λjtN
j
t (C.6)

Furthermore, I guess the multipliers are equal across intermediaries, that is λjt = λt and κjt =

κt ∀j. Using the guess, the incentive constraint can be written as:

βEtΛt,t+1


[
θλt+1(1− ωjt+1)RKt+1QtS

B
t + (1− θ)(1− ωjt+1)RKt+1QtS

B
t

]
−∫∞

ωjt+1

[
θλt+1(ωt − ωjt+1)RKt+1QtS

B
t + (1− θ)(ωt − ωjt+1)RKt+1QtS

B
t

]
dF̃t+1(ω)

 ≥ 0

and reformulated to:

βEtΛt,t+1(θλt+1 + (1− θ))
{

(1− ωjt+1)−
∫ ∞
ωjt+1

(ωt − ωjt+1)dF̃t+1(ω)
}
≥ 0 (C.7)

The next step is to simplify the first order conditions. I use that if either the incentive

constraint binds or if not then λt = 0 (Kuhn Tucker conditions) to simplify the participation

constraint and use that the guess for the value function evaluated at 0 so that the first order

conditions are given as:

0 =EtΛt,t+1R
K
t+1[θλt+1 + (1− θ)](1− ωt+1) + λtEt[Λt,t+1R

K
t+1ω

j
t+1 − 1] (C.8)

0 =− βEtΛt,t+1[θλt+1 + (1− θ)] + λtβEtΛt,t+1 − κtβEtΛt,t+1(θλt+1 + (1− θ))F̃t+1(ωjt+1)

(C.9)
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I can now get the following expression for the multipliers:

λt =
βEtΛt,t+1R

K
t+1[θλt+1 + (1− θ)](1− ωjt+1)

1− βEtΛt,t+1RKt+1ω
j
t+1

(C.10)

κt =
βEtΛt,t+1(λt − [θλt+1 + (1− θ)])

βEtΛt,t+1(θλt+1 + (1− θ))F̃t+1(ωjt+1)
(C.11)

I now want to show that the multipliers are symmetric across intermediaries. Assuming that

equation (C.7), which is the incentive constraint, is binding, I can get ωjt = ωt. Due to

bjt = ωjt+1R
K
t , bjt = bt can be obtained. At the same time, I have ωjt+1 = ωt+1 and b

j
t = bt.

Then, equation (C.10) implies that λjt = λt and equation (C.11) shows κjt = κt. This verifies

my guess that the multipliers are equalized. I check numerically that the participation and

incentive constraint are binding, that is λt > 0 and κt = 0.

To show that the leverage ratio is symmetric, I use the participation constraint and assume

that it is binding:

EtΛt,t+1QtS
Bj
t b

j
t − (QtS

Bj
t −N

j
t ) = 0. (C.12)

The leverage ratio is then given as:

φjt =
1

1− EtΛt,t+1RKt+1ωt+1
. (C.13)

As the leverage ratio does not depend on j, this implies that φt = φjt .

The final step is to show that my guess Vt = λtN
j
t is correct. The starting point is again

the value function:

Vt(N
j
t ) = βEt

[
(θλt+1Nt+1 + (1− θ)

(
1− ωt+1

)
RKt+1QtS

Bj
t )
]
,

where I used N j
t+1 = (1− ωt+1)RKt+1QtS

Bj
t . I insert the guess to obtain:

λtN
j
t = φtN

j
t βEtΛt,t+1

[
θλt+1 + (1− θ)

](
1− ωt+1

)
RKt+1. (C.14)

and reformulate it to

λt = φtEtΛt,t+1

[
θλt+1 + (1− θ)

](
1− ωt+1

)
RKt+1 (C.15)

This gives us again a condition for λt:

λt = Et
[
(θλt+1Nt+1 + (1− θ)

(
1− ωt+1

)
RKt+1QtS

Bj
t )
]

(C.16)

= φtβEtΛt,t+1

[
θλt+1 + (1− θ)

](
1− ωt+1

)
RKt+1. (C.17)

Inserting (C.13), the condition for λt becomes:

λt =
βEtΛt,t+1

[
θλt+1 + (1− θ)

](
1− ωt+1

)
RKt+1

1− βEtΛt,t+1RKt+1ωt+1
. (C.18)
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This coincides with the equation (C.10). This verifies the guess.

C.2 With Runs on the Financial Sector

In this section, the possibility of runs is included. The financial intermediary maximizes Vt

subject to a participation and incentive constraint, which reads as follows:

V j
t (N j

t ) = max
SBjt ,D̄t

(1− pjt )βENt Λt,t+1

[
θV j

t+1

(
N j
t+1

)
+ (1− θ)(RKt+1QtS

Bj
t − D̄

j
t )

]
(C.19)

s.t. (1− pjt )βENt [Λt,t+1QtS
Bj
t b

j
t ] + pjtβE

R
t [RKt+1QtS

Bj
t ] ≥ (QtS

Bj
t −N

j
t ) (C.20)

(1− pjt )ENt

[
Λt,t+1θVt+1

(
N j
t+1

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1QtS

Bj
t

]
≥ (C.21)

βΛt,t+1Et

Λt,t+1

∫ ∞
b
j
t

RKt+1

θVt+1

(
N j
t+1

)
+ (1− θ)

(
ω − b

j
t

RKt+1

)
RKt+1QtS

Bj
t dF̃t+1(ω)


The financial intermediary’s specific can be written as Bellman equation:

Vt(N
j
t ) = max

{φjt ,b
j
t}

(1− pjt )βENt Λt,t+1

[
θVt+1

((
1− b

j
t

RKt+1

)
RKt+1φ

j
tN

j
t

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1φ

j
tN

j
t

]
+ λjt

[
(1− pjt )βENt [Λt,t+1φ

j
tN

j
t b
j
t ] + pjtβE

R
t [RKt+1φ

j
tN

j
t ]− (φjtN

j
t −N

j
t )
]

+ κjtβ

{[
(1− pjt )ENt Λt,t+1

[
Λt,t+1θVt+1

((
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j
t

RKt+1

)
RKt+1φ

j
tN

j
t

)
+ (1− θ)

(
1− b

j
t

RKt+1

)
RKt+1φ

j
tN

j
t

] ]

− βEt
[
Λt,t+1

∫ ∞
b
j
t

RKt+1

θVt+1

((
1− b

j
t

RKt+1

)
RKt+1φ

j
tN

j
t

)
+ (1− θ)

(
ω − b

j
t

RKt+1

)
RKt+1φ

j
tN

j
t dF̃t+1(ω)

]}

The first order conditions with respect to φjt can be written as

0 =(1− pjt )ENt Λt,t+1R
K
t+1[θV ′jt+1 + (1− θ)](1− ωjt+1)

+ λjt ((1− p
j
t )E

N
t [Λt,t+1R

K
t+1ω

j
t+1] + ptE

R
t [Λt,t+1R

K
t+1]− 1)

+ κjt ((1− p
j
t )βE

N
t Λt,t+1R

K
t+1[θV ′jt+1 + (1− θ)](1− ωjt+1)

− κjtβEtΛt,t+1

∫ ∞
ωjt+1

[
RKt+1[θV ′jt+1 + (1− θ)](ω − ωjt+1)

]
dF̃t+1(ω)

− ∂pjt

φjt
ENt Λt,t+1R

K
t+1[θV ′jt+1 + (1− θ)](1− ωjt+1)

(
1 + κjt

)
(C.22)

− ∂pjt

φjt
ENt

(
RKt+1ω

j
t+1 −R

K
t+1

)
(C.23)

where I applied ωjt+1 = b
j
t/R

K
t+1. Gertler, Kiyotaki and Prestipino (2020b) show that the even

though the optimization of leverage φj affect the default probability pt, this indirect effect

on on the firm value Vt and the promised return RDt is zero. The reason is that at the cutoff

value of default, net worth is zero, which implies Vt+1 = 0. Similarly, the promised return is
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unchanged. The cutoff values of default is defined as:

ξDt+1(φjt ) =

{
(σt+1, At+1, ιt+1) : RKt+1

φjt − 1

φjt
R
D
t

}
. (C.24)

At the cutoff points, the intermediary can exactly cover the face value of the deposits, which

implies

ωjt = 1. (C.25)

Based on the derivation in Gertler, Kiyotaki and Prestipino (2020b), the property ωjt = 1

implies that

− ∂pt

SBjt
ENt Λt,t+1R

K
t+1[θV ′jt+1 + (1− θ)](1− ωjt+1)

(
1 + κjt

)
= 0, (C.26)

− ∂pt

SBjt
ENt

(
RKt+1ω

j
t+1 −R

K
t+1

)
= 0, (C.27)

The first order condition with respect to φBt becomes then

0 =(1− pjt )ENt Λt,t+1R
K
t+1[θV ′jt+1 + (1− θ)](1− ωjt+1)

+ λjt ((1− p
j
t )E

N
t [Λt,t+1R

K
t+1ω

j
t+1] + ptE

R
t [Λt,t+1R

K
t+1]− 1)

+ κjt ((1− p
j
t )βE

N
t Λt,t+1R

K
t+1[θV ′jt+1 + (1− θ)](1− ωjt+1)

− κjtβEtΛt,t+1

∫ ∞
ωjt+1

[
RKt+1[θV ′jt+1 + (1− θ)](ω − ωjt+1)

]
dF̃t+1(ω)

The first order condition with respect to b
j
t is given as

0 =− β(1− pjt )ENt Λt,t+1[θV ′jt+1 + (1− θ)]

+ λjtβ(1− pjt )ENt Λt,t+1 (C.28)

− κjtβ(1− pjt )ENt Λt,t+1

{
[θV ′jt+1 + (1− θ)]

}
+ κjtβ(1− pjt )EtΛt,t+1

∫ ∞
ωjt+1

[
θV ′jt+1 + (1− θ)

]
dF̃t+1(ω)− θ Vt+1(0)

RKt+1QtS
Bj
t

f̃t(ω
j
t+1)

where I applied ωjt+1 = b
j
t/R

K
t+1

Similar to before, I use the following guess for the value function

Vt = λjtN
j
t (C.29)

and also the fact that the multipliers are equal across intermediaries, that is λjt = λt and

κjt = κt∀j. In addition, I also guess now that the probability of a run does not depend on

individual characteristics, that is pjt = pt.
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The incentive constraint can then then be written as

β(1− pjt )ENt
[
Λt,t+1(θλt+1 + (1− θ))(1− ωjt+1)RKt+1

]
≥ (C.30)

βEt

Λt,t+1

∫ ∞
b
j
t

RKt+1

(θλt+1 + (1− θ))
(
ω − ωjt+1

)
RKt+1dF̃t+1(ω)


The two first order conditions can then be adjusted similar to section C.1 and be written

as

0 =(1− pt)ENt Λt,t+1R
K
t+1[θλt+1 + (1− θ)](1− ωjt+1)+

λt((1− pt)ENt [Λt,t+1R
K
t+1ωt+1] + ptE

R
t [Λt,t+1R

K
t+1]− 1) (C.31)

0 =− β(1− pt)ENt Λt,t+1[θλt+1 + (1− θ)] + λtβ(1− pt)ENt Λt,t+1

− κtβ
{

(1− pt)ENt Λt,t+1

[
(θλt+1 + 1− θ) F̃t+1(ωjt+1)

]
+ ptE

R
t Λt,t+1

[
(θλt+1 + 1− θ)

(
1− F̃t+1(ωjt+1)

)]}
(C.32)

Using the same strategy as in C.1, the guess about the equalized multipliers can be

verified. Similarly, it can be shown that leverage is the same across intermediaries. This then

verifies that the guess of the run probability pjt = pt is verified as the cutoff value is the same

across intermediaries as shown in equation (C.24). I additionally assume that in case of a

run on the entire financial sector, a intermediary that survives shuts down and returns their

net worth. This implies that ERt λt+1 = 1. The participation constraint is given as:

(1− pt)ENt [βΛt,t+1R̄tDt] + ptE
R
t [βΛt,t+1R

K
t+1QtS

B
t ] = Dt. (C.33)

The incentive constraint is given as:

(1− pt)ENt [Λt,t+1R
K
t+1(θλt+1 + (1− θ))[1− e

−ψ
2 − π̃t+1]] = (C.34)

ptE
R
t [Λt,t+1R

K
t+1(e−

ψ
2 − ωt+1 + π̃t+1)],

λt and κt are derived from the first order conditions in equations (C.31) and (C.32) are given

as:

λt =
(1− pt)ENt Λt,t+1R

K
t+1[θλt+1 + (1− θ)](1− ωt+1)

1− (1− pt)ENt [Λt,t+1RKt+1ωt+1]− ptERt [Λt,t+1RKt+1]
(C.35)

κt =
β(1− pt)ENt Λt,t+1 [λt − (θλt+1 + 1− θ)]

(1− pt)ENt Λt,t+1

[
(θλt+1 + 1− θ) F̃t+1(ωt+1)

]
+ ptERt Λt,t+1

[
(θλt+1 + 1− θ)

(
1− F̃t+1(ωt+1)

)]
(C.36)

If λt > 0 and κt > 0, the participation and incentive constraint are binding.
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D Global Solution Method

The Algorithm uses time iteration with piecewise linear policy functions based on Richter,

Throckmorton and Walker (2014). The approach is adjusted to take into account the multi-

plicity of equilibria due to possibility of a run also that the probability of the run equilibrium

is time-varying. The state variables are {St−1, Nt, σt, At, ιt}, where I used Nt as state variable

instead of Dt−1 for computational reasons. The policy variables are Qt, Ct, bt,Πt, λt. I solve

for the following policy functions Q(X), C(X), b(X),Π(X), λ(X), the law of motion of

net worth N ′(X,εt+1) and the probability of a run next period P (X). The expectations

are evaluated using Gauss-Hermite quadrature, where the matrix of nodes is denoted as ε.

The Algorithm is summarized below:

1. Define a state grid X ∈ [St−1, St−1]× [N t, N t]× [σt, σt]× [At, At] and integration nodes

ε ∈ [εσt+1, ε
σ
t+1] × [εAt+1, ε

A
t+1] to evaluate expectations based on Gauss-Hermite

quadrature

2. Guess the piecewise linear policy functions to initialize the algorithm33

(a) the ”classical” policy functions Q(X), C(X), b(X),Π(X), λ(X)

(b) a function N ′(X,εt+1) at each point from the nodes of next period shocks based

on Gauss-Hermite quadrature

(c) the probability P (X) that a run occurs next period

3. Solve for all time t variables for a given state vector. Take from the previous iteration

j the law of motion N ′
j(X, εt+1) and the probability of a run as given Pj(X) and

calculate time t+1 variables using the guess j policy functions withX′ as state variables.

The expectations are calculated using numerical integration based on Gauss-Hermite

quadrature. A numerical root finder with the time t policy functions as input minimizes

the error in the following five equations:

err1 = (Πt −ΠSS)Πt (D.1)

−
(
ε

ρr

(
ϕmct −

ε− 1

ε

)
+ Λt,t+1(Πt+1 −ΠSS)Πt+1

Yt+1

Yt

)
,

err2 = 1− βΛt,t+1
it

Πt+1
1, (D.2)

err3 = (1− pt)ENt
[
βΛt,t+1R̄tDt

]
+ ptE

R
t

[
βΛt,t+1R

K
t+1QtS

B
t

]
−Dt, (D.3)

err4 = (1− pt)ENt
[
Λt,t+1R

K
t+1(θλt+1 + (1− θ))(1− e

−ψ
2 π̃t+1)

]
(D.4)

− ptERt
[
Λt,t+1R

K
t+1(e−

ψ
2 − ωt+1 + π̃t+1)

]
,

err5 = λt −
(1− pt)ENt Λt,t+1R

K
t+1[θλt+1 + (1− θ)](1− ωt+1)

1− (1− pt)ENt [Λt,t+1RKt+1ωt+1]− ptERt [Λt,t+1RKt+1]
. (D.5)

33In practice, it can be helpful to solve first for the economy with only one shock, for instance the volatility
shock, and solve this model in isolation. The resulting policy functions can then be used as starting point for
the full model with two shocks.
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4. Take the iteration j policy functions , N ′
j(X, εt+1) and Pj(X) as given and solve the

whole system of time t and (t + 1) variables. Calculate then Nt+1 using the ”law of

motion” for net worth

Nt+1 = max
[
RKt+1QtS

B
t −RtDt, 0

]
+ (1− θ)ζSt. (D.6)

A run occurs at a specific point if

RKt+1QtS
B
t −RtDt ≤ 0. (D.7)

In such a future state, the weight of a run is 1. In the other state, the weight of a run

0.34 This can be now used to evaluate the probability of a run next period based on

Gauss-Hermite quadrature so that I know pt.

5. Update the policy policy functions slowly Q(X),C(X),ψ(X),π(X). For instance for

consumption policy function, this could be written as:

Cj+1(X) = αU1Cj(X) + (1− αU1)Csol(X), (D.8)

where the subscript sol denotes the solution for this iteration and αU1 determines the

weight of the previous iteration. Furthermore, N ′(X, εt+1) and P (X) are updated

using the results from step 4:

N ′
j+1(X, εt+1) = αU2N ′

j(X, εt+1) + (1− αU2)N ′
sol(X, εt+1), (D.9)

Pj+1(X) = αU3Pj(X) + (1− αU3)Psol(X). (D.10)

6. Repeat steps 3,4 and 5 until the errors of all functions, which are the classical policy

functions Q(X), C(X), b(X),Π(X), λ(X) together with the law of motion of net

worth N ′(X,εt+1) and the probability of a run P (X), at each point of the discretized

state are sufficiently small.

34This procedure would imply a zero and one indicator, which is very unsmooth. For this reason, I use the

following functional forms based on exponential function:
exp(ζ1(1−Dt+1))

1+exp(ζ1∗(1−Dt+1))
where Dt+1 =

Rk
t+1

RD
t

φ
φ−1

at each

calculated Nt+1. ζ1 is set to 2500. This large value of ζ ensures sufficient steepness so that the approximation
is close to an indicator function of 0 and 1.
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E Particle Filter

I use a particle filter with sequential importance resampling based on Atkinson, Richter

and Throckmorton (2019) and Herbst and Schorfheide (2015). The algorithm is adapted

to incorporate sunspot shocks and endogenous equilibria similar to Aruoba, Cuba-Borda

and Schorfheide (2018), who have a model with sunspot shocks that directly determine the

equilibria. I extend this approach to include the circumstance that the probability of equilibria

is endogenously time-varying. The total number of particles M is set to 10000 as in Aruoba,

Cuba-Borda and Schorfheide (2018).

1. Initialization Use the risky steady state of the model as a starting point and draw

{vt,m}0t=−24 for all particles m ∈ {0, ...,M}. I set {ιt,m = 0}0t=−24, which excludes a run

in the initialization. The simulation of these shocks provides the start values for the

state variables X0,m.

2. Recursion Filter the nonlinear model for periods t = 1, ..., T

(a) Draw the sunspot shock ιt,m and the structural shocks vt,m for each particle

m = {1, ...,M}. The sunspot shock is drawn from a binomial distribution with

realizations 0, 1:

ιt,m ∼ B (1,Υ) , (E.1)

where 1 indicates the number of trails and Υ is the probability of ι = 1.35 The

structural shocks are drawn from a proposal distribution that distinguishes be-

tween the realizations of the sunspot shock :

vt,m ∼ N(vt
ι=0, I) if ιt,m = 0, (E.2)

vt,m ∼ N(vt
ι=1, I) if ιt,m = 1. (E.3)

As the regime selection is endogenous in the model, the proposal distribution can

be the same for the two realizations of the sunspot shock. This is the case if

the model does not suggest the realization of a run. The difference in using the

proposal distribution is that instead of drawing directly from a distribution, I draw

from an adapted distribution. I derive the proposal distribution by maximizing

the fit of the shock for the average state vector Xt−1 = 1
M

∑M
m=1 Xt−1,m

i. Calculate a state vector Xt from Xt−1 and a guess of vt for the possible real-

izations of the sunspot shock:

Xι=0
t = f(Xt−1, v

ι=0
t , ιt = 0) (E.4)

Xι=1
t = f(Xt−1, v

ι=1
t , ιt = 1) (E.5)

35In practice, I draw from a uniform distribution bounded between 0 and 1 and categorize the sunspot
accordingly.
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ii. Calculate the measurement error from the observation equation for the two

cases

uι=0
t = Yt − g(Xι=0

t ), (E.6)

uι=0
t = Yt − g(Xι=1

t ). (E.7)

The measurement error follows a multivariate normal distribution, so that

the probabilities of observing the measurement error for the different sunspot

shocks are given by

p(uι=0
t |Xι=0

t ) = (2π)−n/2|Σu|−0.5 exp
(
−0.5(uι=0

t )′Σ−1
u (uι=0

t )
)
, (E.8)

p(uι=1
t |Xι=1

t ) = (2π)−n/2|Σu|−0.5 exp
(
−0.5(uι=1

t )′Σ−1
u (uι=1

t )
)
, (E.9)

where Σu is the variance of the measurement error and n is the number of

observables, which is 2 in this setup.

iii. Calculate the probability of observing Xι=0
t respectively Xι=1

t conditional on

the average state vector from the previous period

p(Xι=0
t |Xt−1) = (2π)−n/2 exp

(
−0.5(vt

ι=0)′(vt
ι=0)

)
, (E.10)

p(Xι=1
t |Xt−1) = (2π)−n/2 exp

(
−0.5(vt

ι=1)′(vt
ι=1)

)
. (E.11)

iv. To find the proposal distribution, maximize the following objects with respect

vt
ι=0 respectively vt

ι=1 :

p(Xι=0
t |Xt−1)p(uι=0

t |Xι=0
t ), (E.12)

p(Xι=1
t |Xt−1)p(uι=1

t |Xι=1
t ). (E.13)

This provides the proposal distributions N(vt
ι=0, I) and N(vt

ι=1, I).

(b) Propagate the state variables Xt,m by iterating the state-transition equation for-

ward given Xt−1,m, vt,m and ιt,m:

Xt,m = f(Xt−1,m, vt,m, ιt). (E.14)

(c) Calculate the measurement error

utm = Yt − g(Xt,m). (E.15)

The incremental weights of the particle m can be written as

wt,m =
p(ut,m|Xt,m)p(Xt,m|Xt−1,m)

f(Xt,m|Xt−1,m,Yt, ιt,m)
(E.16)

=


(2π)−n/2|Σu|−0.5 exp(−0.5u′t,mΣ−1

u ut,m) exp(−0.5v′t,mvt,m)
exp(−0.5(vt,m−vι=0

t )′(vt,m−vι=0
t ))

if ιt,m = 0

(2π)−n/2|Σu|−0.5 exp(−0.5u′t,mΣ−1
u ut,m) exp(−0.5v′t,mvt,m)

exp(−0.5(vt,m−vι=1
t )′(vt,m−vι=1

t ))
if ιt,m = 1

(E.17)
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where the density f(·) depends on the realization of the sunspot shock. The

incremental weights determine the log-likelihood contribution in period t:

ln(lt) = ln

(
1

M

M∑
m=1

wt,m

)
. (E.18)

(d) Resample the particles based on the weights of the particles. First, the normalized

weights Wt,m are given by:

Wt,m =
wt,m∑M
m=1wt,m

. (E.19)

Second, the deterministic algorithm of Kitagawa (1996) resamples the particles by

drawing from the current set of particles adjusted for their relative weights. This

gives a resampled distribution of state variables Xt,m.

3. Likelihood Approximation Determine the approximated log-likelihood function of

the model as

ln(Lt) =

T∑
t=1

ln(lt). (E.20)

F Further results on the Estimation of Financial Fragility

This section contains shows additional results for Section 4, in which a quantitative analysis

is conducted and the build-up of financial fragility is estimated.

Estimated Time Series Figure F.1 shows further results based on the particle filter. The

filtered median with its 68% confidence interval is shown for selected variables. It shows

the weight of a run over time, the shock processes (volatility and TFP), and important

macroeconomic and financial variables. The implications are in line with the data. The

exercise predicts a credit boom, which ends in a severe credit crunch, countercyclical finance

premium and a period of low inflation after the run.

Forecast of joint distribution over time Figure F.2 shows a contour plot of the one-

quarter-ahead joint distribution of output and leverage over time. It expands the analysis of

the forecast of 2008:Q4 conditional on 2008:Q3, which can be seen in Figure 9.
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Figure F.1: Filtered median with its 68% confidence interval for important variables. The first plot shows the
regime selection. The second and third plot show the exogenous drivers volatility and TFP. The
remaining plots show other key variables. The red line indicates the fourth quarter of 2008.
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Figure F.2: The contour plots displays the one-quarter-ahead joint distribution of GDP growth and leverage
over time. Leverage is on the horizontal axis, while GDP growth is on the vertical axis. Yellow
indicates a high density, while dark blue indicates a low density The red square shows the actual
data realization in the forecasted period. The forecasts are conditioned on the median realization.
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